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1 Program Overview

As Earth system models (ESMs) become increasingly complex, there is a growing need for com-
prehensive and multi-faceted evaluation, analysis, and diagnosis of model results. The relevance of
model predictions to DOE’s energy-related mission hinges in part on the assessment and reduction
of uncertainty in predicted biogeochemical cycles, requiring repeatable, automated analysis meth-
ods and new observational and experimental data to constrain model results and inform model
development. Over the past 21 months in this Scientific Focus Area (SFA) and the prior four
years of the preceding project, our team has pioneered the development and application of new
diagnostic approaches, resulting in 90 published papers, plus 8 published early online papers, 16
manuscripts in review or revision, and additional papers in preparation. Of those papers, 24 have
been published in issues and 8 have been published early online in the last 12 months (since July
1, 2015; see Appendix A). In addition, Appendix B contains a selected set of highlights generated
by the SFA over the past 12 months. Most of these highlights have been posted on the Facebook,
Twitter, Google+, and LinkedIn social media sites for public outreach.

To advance our understanding of biogeochemical processes and their interactions with climate un-
der conditions of increasing atmospheric COs levels, we will continue to expand these analyses
and diagnostics capabilities for assessing biogeochemistry—climate feedbacks, including assessment
of ocean biogeochemical cycles and more effective use of integrated constraints provided by atmo-
spheric trace gas measurements. We have undertaken a broader effort through this SFA activity
that will advance the field through systematic evaluation of predicted biogeochemical processes
and feedbacks in ESMs, with a focus on DOE’s Accelerated Climate Modeling for Energy (ACME)
Model, the DOE-NSF Community Earth System Model (CESM), and simulations from model
intercomparison projects (e.g., CMIP5 and CMIP6). Our SFA also engages experimentalists in
identifying model weaknesses and needed measurements and field experiments.

The overarching goals of this activity are to identify and quantify the feedbacks between biogeo-
chemical cycles and the climate system, and to quantify and reduce the uncertainties in ESMs
associated with those feedbacks. Through a comprehensive program of hypothesis-driven research,
we are pursuing these goals by performing multi-model sensitivity analyses and comparison with
best-available observations and derived metrics. We are focusing on biogeochemistry—climate feed-
backs associated with changes on interannual to decadal timescales (including ecological impacts of
changes in disturbance regimes and climate extremes) and longer-term trends (including potential
tipping points). Important classes of observations that we use in our analysis include DOE Amer-
iflux observations of energy and carbon exchange, NASA remote sensing observations of land and
ocean ecosystem characteristics, NOAA and NSF atmospheric trace gas observations from aircraft
and surface sites, aboveground and belowground carbon inventories, atlases of three-dimensional
ocean carbon and nutrient distributions compiled from shipboard observations, and syntheses of
terrestrial ecosystem manipulations of carbon dioxide, warming, nutrients, soil moisture, and veg-
etation cover.



2 Scientific Objectives

The overarching goals of the BGC Feedbacks SFA are to identify and quantify the
feedbacks between biogeochemical cycles and the climate system, and to quantify and
reduce the uncertainties in ESMs associated with those feedbacks. These goals are being
accomplished through hypothesis-driven multi-model sensitivity analyses and comparisons with
observational data. In recognition of DOE science priorities for understanding the structure and
function of ecosystems that may be impacted by a changing climate, the project is focusing on
biogeochemistry—climate feedbacks associated with changes on interannual to decadal timescales
(including ecological impacts of changes in disturbance regimes and climate extremes) and longer-
term trends (including potential tipping points). Our hypothesis-driven approach is focused on
model evaluation and reduction in the spread of model predictions. In particular, our SFA has the
following five overarching objectives:

1. Develop new hypothesis-driven approaches for evaluating ESM biogeochemical representa-
tions at site, regional, and global scales. Resulting derived data products will be used to
evaluate the predicted mean state, seasonal cycle, interannual variability, and long term
trends of ESMs, using observations from DOE field experiments, data centers, and other
sources. These analyses will span land, ocean, and atmosphere domains, and will include
biogeochemical and physical processes.

2. Investigate the degree to which contemporary observations can be used to reduce uncertain-
ties in future scenarios, using an “emergent constraint” approach that draws upon the full
ensemble of CMIP5 models.

3. Build an open-source benchmarking software system that leverages the growing collection of
laboratory, field, and remote sensing data sets for systematic evaluation of ESM biogeochem-
ical processes. This software will have well-developed land and ocean components and will be
made freely available to the international community for the Coupled Model Intercomparison
Project phase 6 (CMIP6) model development and evaluation.

4. Evaluate the performance of biogeochemical processes and feedbacks in different ESMs using
the benchmarking system described in Objective 3. This will include comparisons of different
versions of the Community Earth System Model (CESM) and DOE’s Accelerated Climate
Modeling for Energy (ACME) Model with the CMIP5 set of ESMs.

5. Provide international leadership for biogeochemistry model evaluation and benchmarking.
Improve model experiment and model output archiving design to enable more effective model
evaluation.



3 Management and Scientific Personnel

Effective management and integration of research activities across institutions into a cohesive and
focused research effort requires active and involved leadership at multiple levels. Management of
this project is shared among the team listed in Table 1, consisting of a Laboratory Research Man-
ager (Principal Investigator), an Executive Council, a Chief Scientist, a Technical Co-Manager at
each Laboratory, and Science Co-Leads. The Laboratory Research Manager is responsible, along
with the Executive Council, for overall project coordination, including organization of meetings
and conference calls, tracking of progress, and reporting to DOE Program Managers. The Exec-
utive Council-—composed of the Laboratory Research Manager, the Senior Science Co-Lead, and
the Chief Scientist—are responsible for the overall direction and conduct of scientific research,
appointing Science Co-Leads, negotiating budget priorities, co-organizing community workshops,
and coordinating research activities across institutions. Technical Co-Managers, one at each DOE
Laboratory plus a single representative for university partnerships, are responsible for allocating
resources and personnel and coordinating budget and progress reports for their institution(s). Uni-
versity Co-Pls, one at each university, are responsible for allocating resources and personnel and
coordinating budget and progress reports for their respective institutions, and report to the Tech-
nical Co-Manager for University Partnerships. The Chief Scientist is selected by a majority of the
Science Co-Leads and the Laboratory Research Manager, and establishes the scientific direction and
evolutionary path of the project in concert with the Executive Council and the Science Co-Leads.
The Senior Science Co-Lead is selected by a majority of the Science Co-Leads, the Chief Scientist,
and the Laboratory Research Manager. The Senior Science Co-Lead assists the Laboratory Re-
search Manager in coordinating the overall project and must be from a DOE Laboratory. Science
Co-Leads direct individual research efforts and coordinate research activities with the Executive
Council.

During the past year, David M. Lawrence from the National Center for Atmospheric Research
(NCAR) was formally added to the project as a University Co-PI and Science Co-Lead through a
subcontract. David previously collaborated with the project team using limited support through
the NCAR Cooperative Agreement.

Personnel who contributed to research, development, and management of the SFA and the preceding
project in 2014 and 2015 are listed, along with their roles, in Table 2. Personnel include laboratory
staff, university faculty and researchers, postdocs, and graduate students.

Table 1: The project management team consists of both Laboratory and university personnel.

Laboratory Executive
Research Chief Council Technical University Science
SFA Team Member Institution Manager Scientist Member Co-Manager Co-PI Co-Lead

Hoffman, Forrest M. ORNL v v v v
Riley, William J. LBNL v v v
Randerson, James T. UCI v v v v v
Elliott, Scott M. LANL v v
Keppel-Aleks, Gretchen UM v v
Koven, Charles D. LBNL v
Lawrence, David M. NCAR v v
Mishra, Umakant ANL v

Moore, J. Keith UCI v

TSenior Science Co-Lead
#Lead University Co-PI



JUDPNYG OyenPRIY) .

20p3IsOd
IOYDIROSNY PUR] N INGT [Suy ‘nqz o€
I9UDIRISIY pue] M TINYHO uenfoery ‘Suex ‘gz
TDIRISIY PUR] A, SMLO/INYO JUA-SuaY) ‘Suex gy
IODIRISNY PUe] N INAT [UeATY MY “Lg
IOYDIROSNY PUe] N INYO N ‘nY 9g
I9YDIBISIY UBII() M INVT [urueyg ‘Suep\  Gg
IOUDIRISOY pue] 2 TINYO Suoysduer) ‘SUCA Fg
IoUDIRISOY pueRT N NGT undurr ‘Suey, "€g
I9TIeOSIY pue’] A DNIN/TNYO LIS Mus g
IOYDIROSNY PUR] N INYO gutfoery ‘Mg ‘1g
PedT-0)) purRT ‘prIT-0) UG IS A A INA'T [ WeTIA 49T 10T
prorT A}ISIDATU) ‘10391I(] 9OUSIOG M A 0N "I, souwre[ ‘uosiopury GI
IOUDIRISIY pue] M TNGT ‘T UOSUIqOY ‘ZoIenp UOISON ‘8T
JINVI 10§ 10dopad( SyHusIdg s s DN wenbJurN N LT
peoT-0p) wead() A A DN ey [ 9I00N 9T
I9UDIe9sdYy pue] A A NV juexeur) “eIysijy ‘G
I9TIeOsIY pue’] A INHO nyerf ‘oeN H1
I9YDIeIsdYy pue] M DN Jned ‘ourao gy
peoT-0p) pue] A A dVON ‘N praR( ‘9ouLIMRT ZT
IoYDIRISdY pue] M TINYHO RIPUSII[L ‘Tewny ‘I]
I9UDIRISaY pue] M A INGT " serrey) ‘uoroy 0T
peor] areydsow)y N M NN usPIaIy) ‘syoly-fodday] 6
peorT-00) pueT ‘pPearT-00) 90USIG A A INYHO ‘N 189110 ‘URWIJOH 'R
I9TIeOsIY pue’] A 0N PIMX °H L
I9UDIRISIY UBII() A DN JOMIOA ‘T 79
peoT-0) wead(O A A INV'I ‘TN 19098 ‘WO "G
JINVI 10§ 10dopad( dyHusIdg A A INYO ueyjeN WIOD
IOTIeOSIY pue’] A INA'T [ SR[OPIN ‘Isnog ‘¢
GINVTI 10} 10dopad( dyHudIdg A A INA'T wejney) Wsig g
IoyPIeasey areydsom)y N NN Zeyjuenreg ‘ofiseq |

uorsod /o], I1o8eue]y Jodo[ead( JoUIIESSIY UOIINIIISUT JoqUIDIAl Wea], VAS

‘sjuepnys ojenpelsd pue ‘soopisod ‘Jeis A)SIoAtun pue Alojeloqe apnyoul puuosiad 309[o1d :g 9[qe],



4 Performance Milestones and Metrics

Over the past year, the BGC Feedbacks SFA team has made substantial progress on many of the
tasks associated with benchmarking package development and workshops and tutorials, as well as
on many of the science questions for marine and terrestrial carbon—climate analyses. In this section,
we report on this progress and present results from manuscripts that are published or in press. Due
to the requested page limit for this report, only a representative subset of our research papers can
be presented. Reported progress on development tasks and science questions is later summarized
in Table 3.

4.1 ILAMB prototype software package (ILAMBv1)

As described in last year’s progress report, a prototype version of the International Land Model
Benchmarking (ILAMB) software package was developed ahead of schedule and was demonstrated
to DOE Program Managers on September 8, 2014, in Germantown, Maryland. In the intervening
period, additional metrics and capabilities have been added to this ILAMB prototype, which now
stands at version 1.8.6. The ILAMB prototype, has been used at NCAR for testing the Commu-
nity Land Model (CLM) as new process representations are being introduced, leading to CLMS5,
and within the DOE’s Accelerated Climate Modeling for Energy (ACME) project for evaluating
the performance of the ACME Land Model (ALM). Moreover, the ILAMB prototype was demon-
strated and released to the public during the ILAMB Town Hall Meeting, convened by Dr. Renu
Joseph and our SFA Team, in San Francisco in December 2015. Results from evaluating CMIP5
models, multiple CLM versions, and ALM using the ILAMB prototype were presented at the DOE-
sponsored 2016 ILAMB Workshop—held in Washington, DC, in May—convened and hosted by our
SFA Team. The ILAMB prototype will be the subject of a manuscript, currently in preparation,
that describes its use in assessing CMIP5 results. We further expect that ILAMB diagnostics from
this prototype will be integral to a paper describing the CLM5 model, which is projected to be
released before the end of calendar year 2016.

The released version of the ILAMBv1 package is available to the public from the project website
and is citable as DOI: 10.18139/ILAMB.v001.00/1251597.

This effort contributes directly to performance on Tasks D1, D2, D4, and D5.

4.2 Next generation benchmarking software package (ILAMBv2)

Ahead of the proposal schedule, we have developed and distributed a next generation package, IL-
AMBv2, for performing model-data benchmarking activities. Released at the 2016 ILAMB Work-
shop in Washington, DC, in May 2016, this package is implemented in python and contains a small
library (ilamblib) for many commonly performed operations in analysis code. This is an impor-
tant layer as it gives developers an efficient and unified way of writing new analysis code. On top
of this library we build two main abstract objects. The ModelResults object makes querying a
set of results associated with a model more simple, circumventing the need for the user to directly
work with the output files. This interface to models also allows us to write code that executes
the model, opening a door for models to more actively interact with the python package. The
Confrontation object is a single place where a developer can add all the analysis code needed for
a particular benchmark. This allows for great modularity as well as parallelism as the work over a
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Figure 1: Summary graphic generated by the ILAMBv2 package depicting model performance
across a wide variety of variables, emphasizing absolute performance (left) as well as relative per-
formance (right).

model-confrontation pair is local. The ILAMBv2 package employs MPI (the Message Passing In-
terface) through mpi4py to provide both shared- and distributed-memory parallelism, dramatically
speeding up processing and analysis.

In addition to analysis code, we have developed more dynamic methods for presenting the results
of the analysis using HTML and javascript. The screenshot depicted in Figure 2 represents a
webpage generated by ILAMBv2. As a model is clicked in the table or a region selected from the
pulldown menu, the graphics and information update to reflect the changes. Furthermore, we have
saved the results of the analysis into datafiles which can be downloaded from the table. This gives
scientists the ability to dig into and scrutinize the results. Moreover, a device-friendly library is
used for the HTML pages, enabling browsing of output on tablet and smartphone devices. The
ILAMBv2 package is in use for evaluating the CESM2 and the ACME models, and it is presently
being incorporated into the workflow packages of both of these modeling systems, so that it is run
whenever land model output is generated.

The released version of the ILAMBvV2 package is available to the public from the project website
and is citable as DOI: 10.18139/ILAMB.v002.00/1251621.

This effort contributes directly to performance on Tasks D1, D3, D4, and D5.
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Figure 2: Sample output page from the ILAMBv2 python package.

4.3 ILAMB Town Hall at the AGU Fall Meeting in San Francisco, CA

The BGC Feedbacks SFA team organized a Town Hall meeting at the American Geophysical Union
(AGU) Fall Meeting in San Francisco, CA, on December 14, 2015. The ILAMB Town Hall meeting
started promptly at 6:15 p.m. with Renu Joseph presenting an overview of DOE-CESD, the RGCM
Program, and the Biogeochemistry—Climate Feedbacks project. Forrest Hoffman provided back-
ground and history information about ILAMB and described the ILAMB prototype (ILAMBv1)
system that is now available for download and general use. Following Forrest, Dave Lawrence
discussed how the ILAMB prototype is being used as a part of Community Land Model (CLM)
development, including some example diagnostics. Next, Jim Randerson presented results of the
ILAMB analysis of 12 CMIP5 Earth system models. Finally, Gretchen Keppel-Aleks and Bill Ri-
ley conducted a question and answer session for 25 minutes. Between 70 and 80 people were in
attendance, and questions and comments were received throughout the remainder of the available
hour.

The Biogeochemistry—Climate Feedbacks Team was encouraged by the overwhelmingly positive
response to the release of the ILAMB prototype (ILAMBv1) package, and were excited about
the possibility of working closely with other research groups to extend ILAMB and to participate
in regional and process-specific studies with the wider scientific community using the ILAMB
framework.

This effort contributes directly to performance on Tasks D5 and D6.



Figure 3: Some of the 60+ ILAMB Workshop participants posing for a group photo outside the
DoubleTree by Hilton Hotel Washington DC on May 16, 2016.

4.4 ILAMB 2016 Workshop in Washington, DC

The BGC Feedbacks SFA team organized an international workshop focused on ILAMB, with
sponsorship from both the RGCM and ESM Programs in DOE-BER, in Washington, DC, on May
16-18, 2016. The workshop drew more than 60 on-site participants, most of whom paid for their own
travel costs and a registration fee. Attendees were from Australia, Japan, China, Germany, Sweden,
Netherlands, UK, and all over the US. They represented 10 different major modeling centers. In
addition, we had about 90 people sign up to attend remotely, although most people who do that do
not end up attending. Nevertheless, we consistently had between 20 and 30 participants online via
BlueJeans at any time during the plenary sessions, including additional DOE Program Managers
(David Lesmes and Sally McFarlane), students and postdocs from various universities and Labs,
and invitees unable to travel from Canada, China, etc. In addition, we had 24 posters presented
on the evening of the first day.

Breakout session slides and draft whitepapers were prepared online in Google Slides and Docs a
week before the workshop, and these were all made available for review and comment before the
start of the workshop, which I think helped prepare participants for really productive discussions
once everyone got in one room. Notes were taken and slides and whitepapers were updated during
the sessions, and remote participants were able to comment on or edit the documents in real time,
as were all other participants. We are continuing this crowdsourcing approach for preparation of the
final workshop report, which we are targeting for completion on September 1. The workshop agenda
and additional information is available at http://www.ilamb.org/meetings/washington2016/,
and the presentations and documents are all on Google Drive at https://drive.google.com/
folderview?id=0B5CL4wjM7r4hU05alVk5Z21pzY2M&usp=sharing.

We handed out thumb drives with the ILAMBv2 code, observational data, and a couple of model
output data sets, which was useful for some to run ILAMB right on their own laptops during the
tutorials and to have a version they could all take home. The tutorials were well attended, and
many stayed well past 6:00 p.m. Wednesday, an hour after the meeting had formally adjourned, to
continue discussing and learning the ILAMBvV2 system. The discussions were really useful, and we
received many comments that people found the workshop was useful and rewarding for them.

This effort contributes directly to performance on Tasks D5 and D6.
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4.5 ILAMB Tutorial at the 215* CESM Workshop in Breckenridge, CO

Because of the success of the tutorial sessions held at the ILAMB 2016 Workshop and interest
expressed from NCAR and university researchers, we held another tutorial session on the use of the
ILAMBvV2 package at the 215* Annual CESM Workshop in Breckenridge, CO. The tutorial session
was offered on Wednesday evening, following the Land Model Working Group and the Biogeochem-
istry Working Group Meetings earlier in the day, from 5:00 p.m. to 7:00 p.m. Approximately 25
people attended the tutorial for the entire time, even though it was at the end of a long day, and
received a thumbdrive copy of the ILAMBv2 code and data. This session allowed us to engage more
students, postdocs, and university and laboratory researchers to widen the use of our benchmarking
system.

This effort contributes directly to performance on Tasks D5 and D6.

4.6 Marine biogeochemistry (organics and aerosols)

Organic macromolecules constitute a high percentage of remote sea spray. They enter the atmo-
sphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to
influence the chemistry of the fine mode aerosol. In a recent study, we presented a global esti-
mate of mixed-layer macromolecular distributions, driven by offline marine systems model output
(Oluwaseun O. Ogunro et al., 2015). The approach permits estimation of oceanic concentrations
and bubble film surface coverages for several classes of organic compound. Mixed layer levels are
computed from the output of a global ocean ecodynamics model by relating the macromolecules
to standard biogeochemical tracers. Steady state is assumed for labile forms, and for longer-lived
components we rely on ratios to existing transported variables. Adsorption is then represented
through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open
water concentrations locally exceed one micromolar carbon for the total of proteins, polysaccha-
rides and refractory heteropolycondensates. The shorter-lived lipids remain confined to regions of
strong biological activity. Results are evaluated against available measurements for all compound
types, and agreement is generally well within an order of magnitude. Global distributions are
further estimated for both fractional coverage of bubble films at the air—water interface and the
two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a
novel tool for the comprehension of oceanic surfactant patterns. These results may prove useful
in planning field experiments and assessing the potential response of surface chemical behaviors to
global change.

This effort contributes directly to performance on Question E5.

4.7 Marine biogeochemistry (carbon cycle feedbacks)

Marine biogeochemistry work at UCI has focused on continued analysis of the CMIP5 ocean models,
initial analysis of longer-term oxygen and marine biogeochemistry trends in the extended climate
simulations to year 2300, and continued development of new diagnostics and observational con-
straints on marine biogeochemical cycling. One new dataset generated was compiled from the
literature summarizing field-estimates of phytoplankton community growth rates at the global-
scale. We have also created a number of new diagnostic routines for examining model output in
comparison with the World Ocean Atlas oxygen and nutrient databases, and with new iron-related
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Figure 4: Comparisons of modeled versus measured global macromolecule concentrations.

observations from the GEOTRACES program. These new diagnostics and datasets are being in-
corporated into the ILAMB system ocean component. Two new publications have resulted, which
are summarized below.

In a recent paper, we compiled and analyzed a new, global-scale dataset of field-based estimates of
phytoplankton community growth rates (Sherman et al., 2016). This new dataset useful for climate
model validation, was published in the supplementary materials section of the paper. We showed
that the influence of temperature on community growth rates at the global scale was substantially
weaker than previously thought (Q1¢ value of ~1.5, rather than 2.0). For climate models to capture
the biological response to the ongoing ocean warming, it is critical for them to accurately represent
this observed empirical relation between temperature and community growth rates.

In another study, we examined a suite of CMIP5 ocean biogeochemical models to determine the key
factors driving declining primary and export production across the models with strong warming
under Representative Concentration Pathway (RCP) 8.5 (Fu et al., Biogeosci., accepted). All of
the models showed declining export production in response to increasing stratification (and an
associated reduction in nutrient inputs to surface waters). However, the degree of stratification in
the 1990s and the rates of increase during the 215 century varied considerably across models. The
models with the largest climate-driven increases in stratification and the largest relative declines
in primary and export production, were those that also had the strongest stratification bias for the
1990s. This suggests the climate response may be overestimated in these models. We also show
in this work that the response of Net Primary Production (NPP) to climate warming, is strongly
dependent on ecosystem community structure within the phytoplankton. Models with multiple
phytoplankton groups can capture a community shift towards smaller phytoplankton under the
increasing nutrient stress associated with increasing stratification. The models show smaller relative
declines in primary productivity.

This effort contributes directly to performance on Questions H, J, E5, E7.
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4.8 Human-induced greening of the northern extratropical land surface

Significant land greening in the northern extratropical land (NEL) has been documented through
satellite observations during the past three decades. This enhanced vegetation growth has broad
implications for surface energy, water and carbon budgets, and ecosystem services across multiple
scales. Discernable human impacts on the Earth’s climate system have been revealed by using
statistical frameworks of detection and attribution. These impacts, however, were not previously
identified on the NEL greening signal, due to the lack of long-term observational records, possible
bias of satellite data, different algorithms used to calculate vegetation greenness, and the lack
of suitable simulations from coupled Earth system models (ESMs). In a recent study, we have
overcome these challenges in order to attribute recent changes in NEL vegetation activity (Mao
et al., 2016). We used two 30-year-long remote-sensing-based LAI datasets, simulations from 19
coupled ESMs with interactive vegetation, and a formal detection and attribution algorithm. Our
findings reveal that the observed greening record is consistent with an assumption of anthropogenic
forcings, where greenhouse gases play a dominant role, but is not consistent with simulations that
include only natural forcings and internal climate variability. Given the strong evidence provided
here of historical human-induced greening in the northern extratropics, society should consider
both intended and unintended consequences of its interactions with terrestrial ecosystems and the
climate system. This work demonstrates the first clear evidence of a discernible human fingerprint
on NEL physiological vegetation changes and proposes new investigations which could use detection
and attribution methods to study broad-scale terrestrial ecosystem dynamics.

This effort contributes directly to performance on Questions C, F, and EA4.
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Figure 8: Spatial distribution of active-layer thickness (left) and soil organic carbon stocks to 1-m
depth (right) across Alaska (upper figures) compared with those represented in the average of four
CMIP5 Earth system models (lower figures).

4.9 Spatial representation of organic carbon and active-layer thickness of high
latitude soils in CMIP5 Earth system models

Soil properties such as soil organic carbon (SOC) stocks and active-layer thickness are used in
Earth system models (ESMs) to predict anthropogenic and climatic impacts on soil carbon dynam-
ics, future changes in atmospheric greenhouse gas concentrations, and associated climate changes
in the permafrost regions. Accurate representation of spatial and vertical distribution of these soil
properties in ESMs is a prerequisite for reducing existing uncertainty in predicting carbon—climate
feedbacks. In our recent work, we compared the spatial representation of SOC stocks and active-
layer thicknesses predicted by the coupled Model Intercomparison Project Phase 5 (CMIP5) ESMs
with those predicted from geospatial predictions, based on observation data for the state of Alaska,
USA (Mishra et al., Geoderma, in press). For the geospatial modeling, we used soil profile observa-
tions (585 for SOC stocks and 153 for active-layer thickness) and environmental variables (climate,
topography, land cover, and surficial geology types) and generated fine-resolution (50-m spatial
resolution) predictions of SOC stocks (to 1-m depth) and active-layer thickness across Alaska. We
found large inter-quartile range (2.5-5.5 m) in predicted active-layer thickness of CMIP5 modeled
results and small inter-quartile range (11.5-22 kgm™2) in predicted SOC stocks. The spatial co-
efficient of variability of active-layer thickness and SOC stocks were lower in CMIP5 predictions
compared to our geospatial estimates when gridded at similar spatial resolutions (24.7 compared
to 30% and 29 compared to 38%, respectively). However, prediction errors, when calculated for
independent validation sites, were several times larger in ESM predictions compared to geospatial
predictions. Primary factors leading to observed differences were (1) lack of spatial heterogeneity
in ESM predictions, (2) differences in assumptions concerning environmental controls, and (3) the
absence of pedogenic processes in ESM model structures. Our results suggest that efforts to incor-
porate these factors in ESMs should reduce current uncertainties associated with ESM predictions
of carbon—climate feedbacks.

This effort contributes directly to performance on Questions D, E, and E4.
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Figure 9: Spatial distribution of the annual GPP bias (model — reference) for (a) default version of
CLM4.5 (CLM4.5) and (b) modified version of CLM4.5 (CLM4.5%) aggregated across 1995-2004.
Predictions of CLM4.5* exhibited lower GPP bias compared to FLUXNET-MTE estimates than
did CLM4.5, especially in higher latitudes.

4.10 Representing leaf and root physiological traits in CLM improves global
carbon and nitrogen cycling predictions

In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. How-
ever, current Earth system models (ESMs) do not mechanistically represent functional nitrogen
allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current
version of the Community Land Model (CLM4.5) links nitrogen availability and plant productivity
via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral ni-
trogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen
consumers assumed to be proportional to their relative N demands. However, plants do not pho-
tosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed
by nitrogen that has been allocated to the physiological processes underpinning photosynthesis.
Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs.
We therefore presented a new plant nitrogen model for CLM4.5 with (1) improved representations
of linkages between leaf nitrogen and plant productivity based on observed relationships in a global
plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake
kinetics (Ghimire et al., J. Adv. Model. Earth Syst., in press). Our model improvements led to a
global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore,
water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The
new model’s GPP responses to nitrogen deposition, COs fertilization, and climate also differed from
the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoreti-
cally consistent treatment of competition with belowground consumers led to overall improvements
in global carbon cycling predictions.

This effort contributes directly to performance on Questions C, D, E, F, and E4.
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Figure 10: Using our nonautonomous theory for representing a nine-pool terrestrial carbon cycle
model, we showed an order of magnitude difference in the absolute values of mean transit time,
R, and mean age, M. Moreover, significant differences were shown between these nonautonomous
properties and the instantaneous quantities, R and M, which represent the autonomous model.

4.11 Modeling the carbon cycle as a nonautonomous system

The terrestrial carbon cycle, like many biological systems, is commonly represented by compart-
mental models. Key metrics of the dynamics of such systems are transit time and mean age, which
need not be the same. Under equilibrium, parameters describing the dynamics are constant in
time, leading to models in the form of autonomous linear differential equations. With parameters
and inputs that depend on time (e.g., under climate change), the compartmental models of inter-
est are nonautonomous and are special cases of linear nonautonomous differential equations. We
developed a theory for transit times and mean ages as nonautonomous compartmental systems. In
recent research within an NIMBioS Working Group led by Yiqi Luo, we employed the McKendrick-
von Forster equation to show the mean age of mass in a compartmental system satisfies a linear
nonautonomous ordinary differential equation that is exponentially stable (Rasmussen et al., J.
Math. Biol., in press). We applied this theory to study a nine-dimensional nonautonomous com-
partmental system modeling the terrestrial carbon cycle based on a modification of the Carnegie—
Ames—Stanford Approach (CASA) model. We demonstrated that the nonautonomous versions of
transit time and mean age differ significantly from the autonomous quantities when calculated for
that model. For the nine-pool carbon model, results indicate that the average age of carbon stored
on land is much larger than the average age of carbon leaving the land. We further showed that
our nonautonomous theory generalizes the autonomous case.

This effort contributes directly to performance on Questions D and E.

4.12 Multiple soil nutrient competition between plants, microbes, and mineral
surfaces

Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., min-
eral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This
competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls
aboveground plant productivity. In our recent research, we developed, calibrated and tested a nu-
trient competition model that accounts for multiple soil nutrients interacting with multiple biotic
and abiotic consumers (Qing Zhu et al., 2016). When applied for tropical forests, the Nutri-
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Figure 11: Model perturbation experiments compared with nitrogen and phosphorus fertilization
field experimental data. The blue dots show the difference between control and perturbed simu-
lations, which mean how much newly added nutrient each consumer takes up. The red circles are
recovered isotopically labeled nutrient within each consumer. Since plants phosphorus uptake was
not measured at Hawaii sites, we did not include the plants in the perturbation study.

ent COMpetition model (N-COM) included three primary soil nutrients (NH, NO+3~ and PO,;
representing the sum of POi*, HPO?[ and HoPO; ) and five potential competitors (plant roots, de-
composing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition was formulated
with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple
substrates share one consumer) and consumer (multiple consumers compete for one substrate) ef-
fects. N-COM successfully reproduced observed soil heterotrophic respiration, NoO emissions, free
phosphorus, sorbed phosphorus and NHI pools at a tropical forest site (Tapajos). The overall
model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil
nutrient competition was primarily regulated by consumer—substrate affinity rather than environ-
mental factors such as soil temperature or soil moisture. Our results also imply that under strong
nutrient limitation, relative competitiveness depends strongly on the competitor functional traits
(affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze
field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and
Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and
phosphorus elevated conditions, the model accurately replicated the experimentally observed com-
petition among nutrient consumers. Although we used as many observations as we could obtain,
more nutrient addition experiments in tropical systems would greatly benefit model testing and
calibration. In summary, the N-COM model provides an ecologically consistent representation of
nutrient competition appropriate for land BGC models integrated in Earth system models.

This effort contributes directly to performance on Questions C, D, E, F, and G.

4.13 How can we most directly combine datasets to estimate the magnitude of
the permafrost carbon—climate feedback?

Enormous stocks of carbon exist in permafrost soils, which are vulnerable to loss with warming.
Earth system models (ESMs) are beginning to include the processes that govern this feedback, but
they show large uncertainties for permafrost processes. Working as part of the Permafrost Carbon
Network (PCN), we built a synthesis of syntheses that combines meta-analyses of permafrost incu-
bation data, Panarctic soil C maps, and Intercomparison of soil thermal models for the permafrost
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Figure 12: Spatial distribution of the dominant drivers for the ET. (a) Dominant drivers for the
natural and human-induced ET, and (b) dominant drivers for the human-induced ET. CLI: the
impact from historical climate only, OTH: all anthropogenic impacts, COs: the historical COs
impact only, NDE: the historical nitrogen deposition impact only, LUC: the historical land use/land
cover change impact only.

region to create the PCN Incubation—Panarctic Thermal (PInc—PanTher) scaling approach. The
results of this approach are that carbon losses are roughly linear with warming, with a permafrost
carbon-climate feedback parameter of —14 to —19 Pg C°C~!, which is still substantial but smaller
than some earlier estimates. We identified key processes that are not included in this approach as
a guide for further research directions on understanding the permafrost carbon—climate feedbacks.

This effort contributes directly to performance on Questions D, E2, and E4.

4.14 Disentangling climatic and anthropogenic controls on global terrestrial
evapotranspiration trends

We examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes
from 1982 to 2010 using multiple estimates from remote sensing-based datasets and process-oriented
land surface models (Jiafu Mao et al., 2015). A significant increasing trend of ET in each hemi-
sphere was consistently revealed by observationally-constrained data and multi-model ensembles
that considered historic natural and anthropogenic drivers. The climate impacts were simulated to
determine the spatiotemporal variations in ET. Globally, rising COs ranked second in these models
after the predominant climatic influences, and yielded decreasing trends in canopy transpiration
and ET, especially for tropical forests and high-latitude shrub land. Increasing nitrogen deposition
slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit
with substantial uncertainties across the factorial analysis, were minor globally, but pronounced
locally, particularly over regions with intensive land-cover changes. Our study highlights the impor-
tance of employing multi-stream ET and ET-component estimates to quantify the strengthening
anthropogenic fingerprint in the global hydrologic cycle.

This effort contributes directly to performance on Questions A, D, E, and E4.
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4.15 Plant responses to increasing CO, reduce estimates of climate impacts on
drought severity

The demand for water by the atmosphere is widely predicted to increase due to climate change.
While it is commonly assumed that this will cause droughts to become more widespread and severe,
many recent studies, ignore the impact of rising atmospheric CO2 on stomatal conductance and
plant water use. In our recent research, we show that prediction of future drought stress is greatly
reduced by plant physiological responses to CO2 and that this is captured by using plant-centric
rather than atmosphere-centric drought metrics from Earth system models (ESMs) (Swann et al.,
Proc. Nat. Acad. Sci., in review). The atmosphere-centric Palmer Drought Severity Index (PDSI)
predicts future increases in drought stress for more than 70% of global land area. This area drops to
37% with the use of precipitation minus evapotranspiration (P — F), a measure that represents the
water flux available for use by humans and downstream ecosystems. Projections of future climate
made with Earth system models already include the response of plants to increasing COy. We
show the sensitivity of widely-used drought metrics to radiative and physiological drivers is highly
variable, and that incomplete representation of plant transpiration responses to CO2 contributes
to recent divergent reports of changing drought stress. More effective use of drought indices that
fully integrate the influence of plants on evapotranspiration, including direct use of P — FE, soil
moisture and runoff variables from ESMs, is needed to reduce uncertainties associated with future
assessment of changing drought stress.

This effort contributes directly to performance on Questions B and E1.

4.16 Evaluating the strength of the land—atmosphere moisture feedback in
Earth system models using satellite observations

The relationship between terrestrial water storage (TWS) and atmospheric processes has impor-
tant implications for predictability of climatic extremes and projection of future climate change.
In places where moisture availability limits evapotranspiration (ET), variability in TWS has the
potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric con-
ditions, in turn, influence moisture availability, a full feedback loop exists. In a recent study, we
developed a novel approach for measuring the strength of both components of this feedback loop,
i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric
variability, using satellite observations of TWS, precipitation, solar radiation, and vapor pressure
deficit during 2002-2015 (Levine et al., Hydrol. Earth Syst. Sci. Discuss., in review). Metrics de-
rived from the satellite data were used to evaluate the strength of the feedback loop in 38 members
of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that
contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We
found that both forcing and response limbs of the feedback loop in LENS were stronger than in the
satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models
were not as strong as those found in LENS, but were still generally stronger than those estimated
from the satellite measurements. Consistent with previous studies conducted across different spa-
tial and temporal scales, our analysis suggests that models may overestimate the strength of the
feedbacks between the land surface and the atmosphere. We describe several possible mechanisms
that may contribute to this bias, and discuss pathways through which models may overestimate
ET or overestimate the sensitivity of ET to TWS.

This effort contributes directly to performance on Questions D and E.
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Table 3: Major Project Deliverables and Science Questions

Task or Question Section

Task D1: Initial design document for benchmarking package 4.1, 4.2

Task D2: Alpha prototype of benchmarking package 4.1

Task D3: Beta prototype of benchmarking package 4.2

Task D4: Friendly-user testing of benchmarking package 4.1,4.2

Task D5: Delivery of initial benchmarking package to community 4.1,4.2,4.3, 4.4,
4.5

Task D6: First benchmarking workshop 4.3,4.4,4.5

Task D7: Second benchmarking workshop

Question A: How well can ESMs capture observed changes in the amplitude and phase of 4.14

the seasonal cycle of atmospheric CO, and CH,4?

Question B: How well can ESMs simulate observed linkages between growing season 4.15

onset and mid-summer drought stress?

Question C: How well can ESMs capture the abundance and spatial variability of leaf 4.8, 4.10, 4.12

area regionally and globally?

Question D: How do comparisons between observed and modeled functional responses 4.9, 4.10, 4.11,

inform whether models (1) include the appropriate mechanisms; (2) have accurate 4.12, 4.13, 4.14,

parameterizations of those mechanisms; and (3) produce reasonable estimates of 4.16

biogeochemical feedbacks?

Question E: How do carbon stocks, ecosystem processes, and surface biophysics vary 4.9, 4.10, 4.11,

across ecotones? 4.12, 4.14, 4.16

Question F: How will C-nutrient interactions regulate terrestrial carbon cycle responses | 4.8, 4.10, 4.12

to changes in atmospheric CO2 and climate?

Question G: How can ecosystem manipulations serve to constrain long-term model 4.12

responses?

Question H: What factors control spatial and temporal differences in the patterns of 4.7

ocean net primary production and export production among ESMs?

Question I: What factors control the size and distribution of the ocean oxygen minimum

zones currently, and what are the potential climate feedbacks from OMZ expansion?

Question J: How well do ESM ocean models capture the magnitude and spatio-temporal 4.7

patterns of anthropogenic CO5 uptake and storage in the oceans? What are the climate

feedbacks of this CO2 uptake and the resulting ocean acidification?

Question E1: Can observed variability in the CO5 growth rate be used as a constraint on 4.15

the long-term (215% century) sensitivity of tropical carbon stocks to warming and

drought?

Question E2: Do models that overestimate snow albedo feedbacks underestimate 4.13

permafrost loss during the 215¢ century?

Question E3: How have plant functional type distributions changed over the past several

decades, and can these changes be used to infer rates of future spatial shifts?

Question E4: Can the strength of the carbon—concentration feedbacks in terrestrial 4.8, 4.9, 4.10,

ecosystems be constrained using observations? 4.13, 4.14

Question E5: Is the weakening of the ocean biological pump over the 215 century linked 4.6, 4.7

to biases in current-era nutrient distributions, carbon flux observations, and/or tracers of

ocean physical processes?

Question E6: Are variations in the future expansion of oxygen minimum zones across

different models tied to existing Oz and/or CFC biases?

Question E7: How strongly are the spatial and temporal trends in anthropogenic CO2 4.7

and ocean acidification over the 21% century linked to current-era biases in the ocean
anthropogenic COs distributions?
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