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1 Program Overview

As Earth system models (ESMs) become increasingly complex, there is a growing need for com-
prehensive and multi-faceted evaluation, analysis, and diagnosis of model results. The relevance of
model predictions to DOE’s energy-related mission hinges in part on the assessment and reduction
of uncertainty in predicted biogeochemical cycles, requiring repeatable, automated analysis meth-
ods and new observational and experimental data to constrain model results and inform model
development. Over the past nine months in this Scientific Focus Area (SFA) (October–June) and
the prior four years of the preceding project, our team has pioneered the development and ap-
plication of new diagnostic approaches, resulting in 68 published papers, 6 manuscripts in review
or revision, and additional papers in preparation. 35 of those papers have been published in the
last 18 months (since January 1, 2014; see Appendix A). To advance our understanding of biogeo-
chemical processes and their interactions with climate under conditions of increasing atmospheric
CO2 levels, we will continue to expand these analyses and diagnostics capabilities for assessing
biogeochemistry–climate feedbacks, including assessment of ocean biogeochemical cycles and more
effective use of integrated constraints provided by atmospheric trace gas measurements. We have
undertaken a broader effort through this SFA activity that will advance the field through systematic
evaluation of predicted biogeochemical processes and feedbacks in ESMs, with a focus on DOE’s Ac-
celerated Climate Modeling for Energy (ACME) Model, the DOE-NSF Community Earth System
Model (CESM), and simulations from model intercomparison projects (e.g., CMIP5 and CMIP6).
Our SFA also engages experimentalists in identifying model weaknesses and needed measurements
and field experiments.

The overarching goals of this activity are to identify and quantify the feedbacks between biogeo-
chemical cycles and the climate system, and to quantify and reduce the uncertainties in ESMs
associated with those feedbacks. Through a comprehensive program of hypothesis-driven research,
we are pursuing these goals by performing multi-model sensitivity analyses and comparison with
best-available observations and derived metrics. We are focusing on biogeochemistry–climate feed-
backs associated with changes on interannual to decadal timescales (including ecological impacts of
changes in disturbance regimes and climate extremes) and longer-term trends (including potential
tipping points). Important classes of observations that we use in our analysis include DOE Amer-
iflux observations of energy and carbon exchange, NASA remote sensing observations of land and
ocean ecosystem characteristics, NOAA and NSF atmospheric trace gas observations from aircraft
and surface sites, aboveground and belowground carbon inventories, atlases of three-dimensional
ocean carbon and nutrient distributions compiled from shipboard observations, and syntheses of
terrestrial ecosystem manipulations of carbon dioxide, warming, nutrients, soil moisture, and veg-
etation cover.
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2 Scientific Objectives

The overarching goals of the proposed SFA are to identify and quantify the feedbacks
between biogeochemical cycles and the climate system, and to quantify and reduce the
uncertainties in ESMs associated with those feedbacks. These goals will be accomplished
through hypothesis-driven multi-model sensitivity analyses and comparisons with observational
data. In recognition of DOE science priorities for understanding the structure and function of
ecosystems that may be impacted by a changing climate, the project will focus on biogeochem-
istryclimate feedbacks associated with changes on interannual to decadal timescales (including
ecological impacts of changes in disturbance regimes and climate extremes) and longer-term trends
(including potential tipping points). Our hypothesis-driven approach will be focused on model
evaluation and reduction in the spread of model predictions. In particular, our SFA will have the
following five overarching objectives:

1. Develop new hypothesis-driven approaches for evaluating ESM biogeochemical representa-
tions at site, regional, and global scales. Resulting derived data products will be used to
evaluate the predicted mean state, seasonal cycle, interannual variability, and long term
trends of ESMs, using observations from DOE field experiments, data centers, and other
sources. These analyses will span land, ocean, and atmosphere domains, and will include
biogeochemical and physical processes.

2. Investigate the degree to which contemporary observations can be used to reduce uncertain-
ties in future scenarios, using an “emergent constraint” approach that draws upon the full
ensemble of CMIP5 models.

3. Build an open-source benchmarking software system that leverages the growing collection of
laboratory, field, and remote sensing data sets for systematic evaluation of ESM biogeochem-
ical processes. This software will have well-developed land and ocean components and will be
made freely available to the international community for the Coupled Model Intercomparison
Project phase 6 (CMIP6) model development and evaluation.

4. Evaluate the performance of biogeochemical processes and feedbacks in different ESMs using
the benchmarking system described in Objective 3. This will include comparisons of different
versions of the Community Earth System Model (CESM) and DOE’s Accelerated Climate
Modeling for Energy (ACME) Model with the CMIP5 set of ESMs.

5. Provide international leadership for biogeochemistry model evaluation and benchmarking.
Improve model experiment and model output archiving design to enable more effective model
evaluation.
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3 Management and Scientific Personnel

Effective management and integration of research activities across institutions into a cohesive and
focused research effort requires active and involved leadership at multiple levels. Management of
this project is shared among the team listed in Table 1, consisting of a Laboratory Research Man-
ager (Principal Investigator), an Executive Council, a Chief Scientist, a Technical Co-Manager at
each Laboratory, and Science Co-Leads. The Laboratory Research Manager is responsible, along
with the Executive Council, for overall project coordination, including organization of meetings and
conference calls, tracking of progress, and reporting to DOE Program Managers. The Executive
Council—composed of the Laboratory Research Manager, the Chief Scientist, and the Senior Sci-
ence Co-Lead—are responsible for the overall direction and conduct of scientific research, appointing
Science Co-Leads, negotiating budget priorities, co-organizing community workshops, and coordi-
nating research activities across institutions. Technical Co-Managers, one at each DOE Laboratory
plus a single representative for university partnerships, are responsible for allocating resources and
personnel and coordinating budget and progress reports for their institution(s). University Co-PIs,
one at each university, are responsible for allocating resources and personnel and coordinating bud-
get and progress reports for their respective institutions, and report to the Technical Co-Manager
for University Partnerships. The Chief Scientist is selected by a majority of the Science Co-Leads
and the Laboratory Research Manager, and establishes the scientific direction and evolutionary
path of the project, in concert with the Executive Council and the Science Co-Leads. The Senior
Science Co-Lead is selected by a majority of the Science Co-Leads, the Chief Scientist, and the
Laboratory Research Manager. The Senior Science Co-Lead assists the Laboratory Research Man-
ager in coordinating the overall project and must be from a DOE Laboratory. Science Co-Leads
direct individual research efforts and coordinate research activities with the Executive Council.

Personnel who contributed to research, development, and management of the SFA and the preceding
project in 2014 and 2015 are listed, along with their roles, in Table 2. Personnel include laboratory
staff, university faculty and researchers, postdocs, and graduate students.

Table 1: The project management team consists of both Laboratory and university personnel.

Laboratory Executive
Research Chief Council Technical University Science

SFA Team Member Institution Manager Scientist Member Co-Manager Co-PI Co-Lead

Hoffman, Forrest M. ORNL X X X X
Riley, William J. LBNL X X X†

Randerson, James T. UCI X X X X‡ X
Elliott, Scott M. LANL X X
Keppel-Aleks, Gretchen UM X X
Koven, Charles D. LBNL X
Mishra, Umakant ANL X
Moore, J. Keith UCI X
Thornton, Peter E. ORNL X
†Senior Science Co-Lead
‡Lead University Co-PI
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4 Performance Milestones and Metrics

Over the past year, the BGC Feedbacks SFA team has made substantial progress on many of the
tasks associated with benchmarking development and on many of the science questions for marine
and terrestrial carbon–climate analyses. In this section, we report on this progress and present
results from manuscripts that are published or in press. Due to the requested page limit for this
report, only a representative subset of our research papers are presented. Reported progress on
development tasks and science questions is later summarized in Table 3.

4.1 ILAMB prototype software package

A prototype version of the International Land Model Benchmarking (ILAMB) software package
was developed ahead of schedule and was demonstrated to DOE Program Managers on September
8, 2014, in Germantown, Maryland. Over the last nine months, additional metrics and capabilities
have been added to this ILAMB prototype. The most recent prototype, version 0.7.7, is in use at
NCAR for testing the Community Land Model (CLM) as new process representations are being
introduced, leading to CLM5. In addition, version 0.7.7 is presently being introduced into the
Accelerated Climate Model for Energy (ACME) workflow system for routine evaluation of ACME
model simulation results. The ILAMB prototype will be the subject of a manuscript, currently
in preparation, that describes its use in assessing CMIP5 results. We further expect that ILAMB
diagnostics from this prototype will be integral to a paper describing the released CLM5 model.

This effort contributes directly to performance on Tasks D1 and D2.

4.2 Next generation benchmarking software package

We have begun developing a next generation python package for performing model-data benchmark-
ing activities. The package is implemented in python and schematically represented in Figure 1.
First we have built a small library (ilamblib, shown in green) for many commonly performed
operations in analysis code. This is an important layer as it gives developers an efficient and uni-
fied way of writing new analysis code. On top of this library we build two main abstract objects.
The ModelResults object makes querying a set of results associated with a model more simple,
circumventing the need for the user to directly work with the output files. This interface to models
also allows us to write code which executes the model, opening a door for models to more actively
interact with the python package. The Confrontation object is a single place where a developer
can add all the analysis code needed for a particular benchmark. This allows for great modularity
as well as parallelism as the work over a model-confrontation pair is local.

In addition to analysis code, we have developed more dynamic methods for presenting the results of
the analysis using HTML and javascript. The screenshot depicted in Figure 2 represents a webpage
which our python package generates. As a model is clicked in the table or a region selected from
the pulldown menu, the graphics and information update to reflect the changes. Furthermore, we
have saved the results of the analysis into datafiles which can be downloaded from the table. This
gives scientists the ability to dig into and scrutinize the results.

This effort contributes directly to performance on Tasks D1 and D3.
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python packages numpy, matplotlib, basemap, netCDF4, h5py, mpi4py

ilamblib
● efficient python implementations of commonly performed operations such 

as I/O, metrics, data array analysis and manipulations
● makes commonly used metrics available for others and precise in their 

meaning and interpretation

ModelResults
● handles model queries and 

extractions abstractly
● circumvents the need to interact 

with output files directly
● stores confrontation outputs for 

post-processing

command-line tool uses the package and operates on collections of models

post
● package of standard methods for viewing and presenting results
● data formats will be flexible for custom representations in other languages

IL
A

M
B

 p
yt

ho
n 

pa
ck

ag
e

Confrontations
● couples the observational data 

with the analysis routines 
● self-contained small modules 

that make analysis simple to 
follow and reproduce

● collection of confrontations is 
easy to extend

Figure 1: Schematic depiction of the next generation ILAMB python package.

Figure 2: Sample HTML output from the next-generation ILAMB python package.
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Figure 3: Benchmarking of specialized DOE marine geocycles: controls on surface ocean DMS.
In review, Wang et al. (J. Geophys. Res.). Improved simulation for the polar ecodynamics and
distributions of colonial Phaeocystis, a significant producer of marine organo(reduced)-sulfur. Com-
putations conducted in CESM versions now utilized for ongoing HiLAT simulations. Measurement
comparison points were taken from the PANGAEA data set. All progress on the DMS mechanism
will transfer to ACME.

4.3 Marine biogeochemistry (organics and aerosols)

Surface ocean organosulfur mechanisms involving full phytoplanktonic and bacterial interactions
now provide realistic emissions of dimethyl sulfide into the global troposphere. Observational data
sets being drawn upon for validation include PANGAEA ecosystem structural tables and the LANA
mixed layer trace gas collection (Figure 3). Relevant publications are now entering the AGU family
of journals. The familiar dissolved organic carbon or DOC available in many biogeochemistry codes
is now being segregated into its specific macromolecular composition. Lipids, proteins, and polysac-
charides along with their phosphorylated, aminated and acidic variants, heteropolycondensates and
humic substances are all distinguished for planetary scale surfactant mapping purposes. Under the
present SFA we are creating our own data base, because no others are currently in existence. Re-
sults will be made available on the web under the acronym/name OCEANFILMS. This is a strong
cross-laboratory collaboration involving LANL, PNNL and LLNL. Detailed parameterizations for
bubble bursting and sea spray generation of aerosol organic mass will be comprehensively included.
Influence of organic coverage on properties of the global microlayer will be studied, relative to
greenhouse gas sea-air transfer.

Taken together, the COSIM reduced sulfur and DOC surfactant simulations provide the department
with a complete capability to study marine biogenic aerosol precursors. Global indirect effect cal-
culations thus become uniquely possible within the department systems model family. There is the
potential to quantify feedbacks in the single most uncertain component of the present day climate
system. Diffusion toward the international community has already begun, through agreements
with our sister code CESM which remains under development at NCAR. Publications describing
the overall research are appearing in ERL, ACP, Biogeochemistry and AGU journals plus one par-
ticularly high profile contribution has just been accepted at Science Advances (Figure 4). Both our
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Figure 4: Feedbacks from specialized DOE geocycles to the marine atmosphere: Biogenic aerosol
emissions operate on cloud droplet number concentrations over the Southern Ocean. In press,
McCoy et al. (Science Advances). A multiple linear regression analysis superimposed on one
dimensional radiation transfer is used to attribute almost two thirds of variability in reflected
shortwave to biogeochemical aerosol sources. Biology thus controls between ten and twenty watts
per meter squared during the critical summer period. This calculation includes both sulfate from
DMS and macromolecular POA. Across the international community, the underlying simulations
can only be performed in DOE model systems. The work represents an early application of the
new OCEANFILMS database.

taxonomic structure papers and the Science work discuss aerosol-cloud-ecosystem feedback mecha-
nisms which become accessible given our dynamic mechanisms. We will argue that the department
is positioned to conduct super-CLAW ensembles for natural aerosol cycles.

COSIM Benchmarking scientists have also recently tested and incorporated the first global ice algal
simulator, primarily for insertion into a biogeochemical CICE model, which figures prominently in
plans for both ACME and DOE HiLAT. Emphasis will be placed upon pigment/energy deposition
feedbacks leading to Arctic amplification. But simultaneously we will elucidate the role of detrital
macromolecules in gel formation. Colloids forming from exopolymers injected into brine channels
can dramatically alter the configuration of pack ice pore networks. Nutrient penetration, light
absorption and crystalline matrix formation may all be affected. Relevant benchmarking has been
supported entirely by the current project. Chlorophyll data from a variety polar campaigns are
utilized as a primary basis for validation, but again the environmental organic chemistry turns
out to be understudied and underorganized. Hence another independent d-basing effort must be
undertaken. This will appear under a combined CICE-OCEANFILMS banner since the compounds
involved exhibit ice-to-brine adsorption properties. Furthermore they bind the growth limiting
trace metal iron tightly and internally within the pack. Thus we we will include ligand-chelation
equilibrium constants in the data set. This effort is more recent than any of our other projects, so
that most of publications are still in preparation. They will likely appear in AGU venues and the
new code development format JAMES.

The DOE-side marine sciences benchmarking project is specialized at several levels, but it is
nonetheless designed to be readily extensible. We anticipate connections with multiple, rapidly-
approaching data base efforts distributing themselves across the community. CMIP type validation
should move beyond standard GLODAP applications to include the new generation of automated
biogeochemical float sensors/detectors. The SOCCOM experiments will be among the first to utilize

8



such information. Hence DOE systems models are natural participants—alternative mechanisms
and variable mesh resolution complement the peculiarities of Southern Ocean biogeochemistry. Ice
edge and eddying processes will be representable along basin scale fronts and across circumpolar
currents. Our aerosol flux and global organic chemistry work parallel the proposed EXPORTS and
NASA (P)ACE campaigns. Such missions are high on the earth science recommendation lists of
both the independent NRC and NAS. The acronym ACE in fact signifies marine Aerosol-, Cloud-
and Eco- systems taken collectively. Department models clearly bring all the most appropriate
mechanisms to the table. By the same token our benchmarking/benchmarked ice algal simulations
complement recent nutrient, primary production and aerosol/trace gas experiments targeted to high
latitudes. Examples include ARCSS and ACCACIA along with arctic PPARR intercomparisons.
We are currently exploring and building collaborations in these highly interdisciplinary areas, with
alternate international agencies.

This effort contributes directly to performance on Question E5.

4.4 Marine biogeochemistry (carbon cycle feedbacks)

Work at UCI on the marine biogeochemistry side has focused on an inter-comparison of the CMIP5
ocean biogeochemical models. We find considerable model spread when comparing output from the
models with observational estimates of key metrics from the current era, including global net pri-
mary production (NPP) and mean surface nutrient concentrations. The inherent export efficiency
built into the models (and largely a function of the simulated phytoplankton and zooplankton com-
munity structure) drives the wide model spread in NPP. In terms of projections of NPP into the
future, one group of models (CESM, IPSL, and GFDL) predicts larger declines in export production
(EP, sinking carbon flux to ocean interior) than in NPP, because the community structure shifts in
key regions. The other models have a simpler representation of the phytoplankton community and
cannot capture these composition shifts. This class of models predicts larger declines in NPP. As
part of this work we have also been developing analysis tools for looking across all the models that
will be incorporated into the SFA benchmark system. A paper based on this work has recently
been submitted to Biogeosciences Discusssions (Fu, Randerson, and Moore, submitted). Below we
highlight some of the key results from this paper (all figures are from the submitted paper).

Surface Warming and Freshening Increases Stratification

As a consequence of high greenhouse gas emissions under Representative Concentration Pathway
(RCP) 8.5, surface ocean waters warm strongly over the coming century in all the CMIP5 model
simulations. There are also declines in the mean sea surface salinity. Both of these trends act to
decrease the density of surface waters, and so to increase the stratification (defined as the density
difference between 0 m and 200 m depth). Figure 5 shows the increasing mean sea surface tem-
peratures (panel b), the decreasing mean sea surface salinity (panel c) and the resulting increasing
stratification (panel a). Note that some models strongly overestimate the stratification for the
current era (red square in panel a).

As stratification increases, surface nutrient concentrations decline

As stratification increases, the exchange of water between the surface ocean and sub-surface waters
is reduced. Thus, the upward flux of nutrients to the surface that supports biological productivity
decreases. This is seen in the generally declining trends in mean surface nitrate and phosphate
in Figure 6. Note also the wide spread in simulated nutrient concentrations for the current era,
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Figure 5: Time series of global mean stratification, SST, and SSS for historical run and RCP 8.5
over 1850–2100. Stratification is defined as the density difference between 200 m and the surface.
Red square indicates observations from the WOA2009 data.
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Figure 6: Time series of mean nitrate (NO3), phosphate (PO4), silicate (SiO4), and dissolved iron
(dFe) concentrations (0–100 m) are shown for 1850–2100. Red square indicates WOA2009 global
mean values.

relative to the observed values (red squares).

As surface nutrients decline, biological production decreases

The group of models that show smaller declines in NPP than in EP (CESM, GFDL, IPSL) are
those that can capture a shift in phytoplankton community with increasing nutrient stress (fewer
diatoms, more small phytoplankton) (Figure 7).

Current Era Stratification Biases and the Future Projections of NPP and EP

The group of models that show the strongest declines in NPP and EP, also show stronger increases
in the mean ocean stratification. In general, we find a strong correlation between increasing strati-
fication, and decreasing NPP (r2 = 0.73) and with decreasing EP (r2 = 0.90). However, the models
which show the strongest increases in stratification with climate change also have strong positive
biases in mean stratification for the current era (+20–35%). The models with better simulation
of current era stratification (GFDL, IPSL, CESM1), show weaker increases in stratification with
climate change (though still substantial), and show smaller declines in NPP and EP. This suggests
the more biased models may be overestimating the productivity declines with climate change.

This effort contributes directly to performance on Questions H, J, E5, E7.
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Figure 7: Time series of global mean change in net primary production (NPP) and export produc-
tion (EP) for the historical run and RCP 8.5 over 1850–2100.

4.5 Permafrost carbon–climate feedback

As permafrost soils warm, the carbon that is currently locked in them is expected to decompose,
increasing the concentrations of CO2 and CH4 in the atmosphere. This process, known as the
permafrost carbon–climate feedback, is a potentially strong amplifier of global climate change. We
have included the mechanistic basis for these processes within a land surface model, CLM4.5, the
terrestrial component of the CESM Earth system model, and explore the roles of decomposition
dynamics and their interactions with ecosystem processes that govern the magnitude of this process
(Koven et al. 2015; Proc. Nat. Acad. Sci.). We find that magnitude of this effect is highly sensitive
to how decomposition dynamics differ at depth from at the surface, and that deep soil processes
therefore represent a critical uncertainty on projections of future climate change (Figure 8). Further,
we include a model of nitrogen dynamics, which are expected to increase plant growth due to
nitrogen released from thawing permafrost. However, we find that deep nitrogen pools are less
effective at stimulating plant growth than surface soil pools, implying that the decomposition
of deep permafrost soils is more likely to lead to net carbon losses—and therefore more climate
change—than surface soils.

This effort contributes directly to performance on Questions D, E, F, E2.

4.6 Over-prediction of soil carbon–climate feedbacks

Accurately representing the temperature response of soil carbon decomposition is a prerequisite for
credible predictions of soil carbon-climate feedbacks within Earth system models (ESMs). How-
ever, existing ESM soil biogeochemical models generally do not represent the large variability of
this temperature sensitivity. Rather, this temperature sensitivity is usually represented with static
functions or constant parameters (e.g., Q10 and microbial carbon use efficiency) and the concept
of organic matter recalcitrance, all of which are challenged by many recent empirical measure-
ments and experimental manipulations. To characterize these mechanisms and their impacts on
carbon cycling, we developed a thermodynamically based microbe-explicit model that quantifies
the interactions between microbes, enzymes, substrates, and mineral sorption reactions (Tang and
Riley, 2015; Nature Clim. Change). We found that (1) Q10 spans a very large range; (2) microbial
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Figure 8: Mean annual cycles of key ecosystem fluxes for three time periods of the fully forced
C–N case. (A) GPP, (B) net N mineralization, (C) net ecosystem exchange (NEE, positive = CO2

source), and (D) heterotrophic respiration. Relative increase in GPP between experiments is smaller
than proportional increase in N mineralization with deeper decomposition. Shift in N mineralization
with enhanced deeper SOM decomposition toward autumn is due to longer decomposing than
growing seasons, and phase lag of temperature in deep soils. The solid and dashed lines represent
Zτ = 0.5 m and 10 m, respectively. All cases show the mean of the geographic region in which
permafrost initially occurs in the model.
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Figure 9: Predicted emergent responses as a function of temperature forcing of different tempo-
ral variability: (a) steady-state models forced with constant temperature; (b) transient models
forced with seasonally varying, but daily constant, temperature; (c) transient models forced with
seasonally varying, but hourly constant, temperature.

carbon use efficiency is a hysteretic function of temperature (Figure 9); and (3) the concept of
empirically defined “labile” and “recalcitrant” substrates is flawed. We further showed that failing
to represent the dynamic interactions between microbes, enzymes, substrates, and mineral sorption
reactions, as most existing soil biogeochemical models do, may result in significant over-prediction
of soil carbon-climate feedbacks and incorrect application of empirical experimental results to model
development.

This effort contributes directly to performance on Questions D, F, E4.

4.7 Intercomparison of wetland emissions models over West Siberia

Wetlands are the world’s largest natural source of methane, a powerful greenhouse gas. The strong
sensitivity of methane emissions to environmental factors such as soil temperature and moisture has
led to concerns about potential positive feedbacks to climate change. This risk is particularly rele-
vant at high latitudes, which have experienced pronounced warming and where thawing permafrost
could potentially liberate large amounts of labile carbon over the next 100 years. Recent intensive
field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to
assess the performance of large-scale process-based wetland models in a high-latitude environment.
We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated
wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in
situ CH4 flux data set, several wetland maps, and two satellite surface water products (Bohn et al.
2015; Biogeosci.). We found that (a) despite the large scatter of individual estimates, 12-year mean
estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr−1),
inversions (6.06 ± 1.22 Tg CH4 yr−1), and in situ observations (3.91 ± 1.29 Tg CH4 yr−1) largely
agreed; (b) forward models using surface water products alone to estimate wetland areas suffered
from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either
soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peat-
lands tended to be dominated by a single environmental driver (inundation or air temperature),
unlike those of inversions and more sophisticated forward models; (d) differences in biogeochemi-
cal schemes across models had relatively smaller influence over performance; and (e) multiyear or
multi-decade observational records are crucial for evaluating models’ responses to long-term climate
change.
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Figure 10: Mean annual emissions from the WSL (inversions in green, observation-based estimates
in red, and forward models in blue).

This effort contributes directly to performance on Questions A, D, E, F, E4.

4.8 Representation of tropical forest productivity, biomass, and turnover times

A significant fraction of anthropogenic CO2 emissions is assimilated by tropical forests and stored
as biomass, reducing the rate of global warming. Because different plant tissues have different
functional roles and turnover times, predictions of carbon balance of tropical forests depend on
how Earth system models (ESMs) represent the dynamic allocation of productivity to different tree
compartments. This study shows that observed allocation of productivity, biomass, and turnover
times of the main tree compartments (leaves, wood, and roots) are not accurately represented
in CMIP5 (Coupled Model Intercomparison Project Phase 5) ESMs (Negrón-Juárez et al. 2015;
Environ. Res. Lett.). In particular, observations indicate that biomass saturates with increasing
productivity, but most models predict continuous increases in biomass with increases in productivity
(Figure 11). This bias may lead to an over-prediction of carbon uptake in response to CO2 or
climate-driven changes in productivity. Compartment-specific productivity and biomass are useful
benchmarks to assess terrestrial ecosystem model performance. Improvements in the predicted
allocation patterns and turnover times by ESMs will reduce uncertainties in climate predictions.

This effort contributes directly to performance on Questions C, D, E1, E4.

4.9 Growing feedback from ocean carbon to climate

Improved constraints on carbon cycle responses to climate change are needed to inform mitigation
policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain.
Using the Community Earth System Model (v1.0), we quantified climate-carbon feedbacks from
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Figure 11: Relationship between productivity (NPP) and biomass (cVeg) over tropical forests using
CMIP5 models. All models but one show continual increasing biomass as a function of NPP, while
observations show a saturating response.

1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension (Randerson et
al., 2015). In three simulations, land and ocean biogeochemical processes were exposed to the
same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative
coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In
a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850
to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other
greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous
anthropogenic interference with the climate system. Ocean contributions to the climate-carbon
feedback increased considerably over time, and exceeded contributions from land after 2100. The
sensitivity of ocean carbon to climate change was found to be proportional to cumulative ocean
heat uptake, as a consequence of this heat modifying transport pathways for anthropogenic CO2

inflow and solubility of dissolved inorganic carbon. By 2300 climate change reduced cumulative
ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time,
with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon
stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis
suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating
the magnitude of climate–carbon feedbacks.

This effort contributes directly to performance on Questions J, E1, E5.

4.10 Separating the influence of temperature, drought, and fire on the interan-
nual variability of atmospheric CO2

Quantifying contributions of known drivers of interannual variability in the growth rate of at-
mospheric carbon dioxide is important for improving the representation of terrestrial ecosystem
processes in ESMs. Several recent studies have identified the temperature dependence of tropical
net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, glob-
ally averaged time series of CO2 anomalies. We examined how the temporal evolution of CO2 in
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Figure 12: Relative contributions to the simulated variability in atmospheric CO2 in different
latitude bands (x axis) from net ecosystem exchange responses to temperature, drought stress, and
fire emissions originating from the tropics and Northern Hemisphere.

different latitude bands may be used to separate contributions from temperature stress, drought
stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each
of these mechanisms during 1997–2011 using the GEOS-Chem atmospheric transport model. NEE
responses to temperature, NEE responses to drought, and fire emissions all contributed significantly
to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant
driver (Figure 12. We found that the sum of drought and fire contributions to CO2 variability
exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres.
Additional sensitivity tests revealed that these contributions are masked by temporal and spatial
smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temper-
ature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for
accurate attribution of the drivers of CO2 variability prior to using contemporary observations to
constrain long-term ESM responses, and will inform approaches for developing functional response
benchmarks in the ILAMB system under development.

This effort contributes directly to performance on Questions A, B, E, E1.

4.11 Environmental controls and spatial heterogeneity of SOC depend on spa-
tial scale

Spatial heterogeneity of land surface affects energy, moisture, and greenhouse gas exchanges with
the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical
processes in Earth system models (ESMs) remains a critical scientific challenge. DOE/BER-funded
researchers used soil profile observations, environmental factors (topography, climate, land cover
types, and surficial geology), and geospatial modeling to study the impact of spatial scaling on
environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC)
stocks. Authors found different environmental factors as significant predictors of SOC stocks at
different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land
cover types were significant predictors at all investigated scales. The strengths of control of these
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Figure 13: The spatial heterogeneity of soil organic carbon (SOC) stocks decreased with spatial
scale between 50 and 500 m, and remained constant at larger scaled.

four environmental variables on SOC stocks decreased with increasing scale and were accurately
represented using different mathematical functions (R2 = 0.83–0.97). The spatial structure of
SOC stocks also changed with scale. The spatial heterogeneity of predicted SOC stocks decreased
with spatial scale over the range of 50 m to ∼500 m, and remained constant beyond this scale.
The fitted exponential function accounted for 98% of variability in the variance of SOC stocks.
Moderately-accurate linear relationships were found between mean and other statistical properties
of predicted SOC stocks (R2 ≈ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–
100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of
high-latitude SOC stocks consistent with observations. Improved knowledge of the scaling behavior
of environmental controls and statistical properties of SOC stocks will improve ESM land model
benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales
finer than those currently resolved by ESMs.

This effort contributes directly to performance on Question E.

4.12 Honors and Awards

A June 18th News & Views article, titled “Global warming: Growing feedback from ocean carbon
to climate,” appeared in Nature, describing Jim Randerson’s recent paper highlighting significant
ocean carbon cycle feedbacks in long-term simulations. See doi:10.1038/522295a.

J. Keith Moore (UCI) received the 2015 CESM Distinguished Achievement Award at the 20th

Annual CESM Workshop in Breckenridge, Colorado, on June 15, 2015. Keith was cited for his
contributions to the first version of the biogeochemistry component of the ocean model.

At the Ecological Society of America’s annual meeting in Sacramento, California, in August 2014,
Jinyun Tang (LBNL) received honorable mention for the Gene E. Likens Junior Scientist Outstand-
ing Publication Award for his Biogeosciences paper proposing an “equilibrium chemistry” approach
to problems classically represented using Michaelis-Menten (or MM) kinetics.
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Table 3: Major Project Deliverables and Science Questions
Task or Question Section

Task D1: Initial design document for benchmarking package 4.1, 4.2
Task D2: Alpha prototype of benchmarking package 4.1
Task D3: Beta prototype of benchmarking package 4.2
Task D4: Friendly-user testing of benchmarking package
Task D5: Delivery of initial benchmarking package to community
Task D6: First benchmarking workshop
Task D7: Second benchmarking workshop
Question A: How well can ESMs capture observed changes in the amplitude and phase of
the seasonal cycle of atmospheric CO2 and CH4?

4.7, 4.10

Question B: How well can ESMs simulate observed linkages between growing season
onset and mid-summer drought stress?

4.10

Question C: How well can ESMs capture the abundance and spatial variability of leaf
area regionally and globally?

4.8

Question D: How do comparisons between observed and modeled functional responses
inform whether models (1) include the appropriate mechanisms; (2) have accurate
parameterizations of those mechanisms; and (3) produce reasonable estimates of
biogeochemical feedbacks?

4.5, 4.6, 4.7, 4.8

Question E: How do carbon stocks, ecosystem processes, and surface biophysics vary
across ecotones?

4.5, 4.7, 4.10, 4.11

Question F: How will C-nutrient interactions regulate terrestrial carbon cycle responses
to changes in atmospheric CO2 and climate?

4.5, 4.6, 4.7

Question G: How can ecosystem manipulations serve to constrain long-term model
responses?
Question H: What factors control spatial and temporal differences in the patterns of
ocean net primary production and export production among ESMs?

4.4

Question I: What factors control the size and distribution of the ocean oxygen minimum
zones currently, and what are the potential climate feedbacks from OMZ expansion?
Question J: How well do ESM ocean models capture the magnitude and spatio-temporal
patterns of anthropogenic CO2 uptake and storage in the oceans? What are the climate
feedbacks of this CO2 uptake and the resulting ocean acidification?

4.4, 4.9

Question E1: Can observed variability in the CO2 growth rate be used as a constraint on
the long-term (21st century) sensitivity of tropical carbon stocks to warming and
drought?

4.8, 4.10, 4.9

Question E2: Do models that overestimate snow albedo feedbacks underestimate
permafrost loss during the 21st century?

4.5

Question E3: How have plant functional type distributions changed over the past several
decades, and can these changes be used to infer rates of future spatial shifts?
Question E4: Can the strength of the carbon-concentration feedbacks in terrestrial
ecosystems be constrained using observations?

4.6, 4.7, 4.8

Question E5: Is the weakening of the ocean biological pump over the 21st century linked
to biases in current-era nutrient distributions, carbon flux observations, and/or tracers of
ocean physical processes?

4.3, 4.4, 4.9

Question E6: Are variations in the future expansion of oxygen minimum zones across
different models tied to existing O2 and/or CFC biases?
Question E7: How strongly are the spatial and temporal trends in anthropogenic CO2

and ocean acidification over the 21st century linked to current-era biases in the ocean
anthropogenic CO2 distributions?

4.4
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Koven, C. D., E. A. G. Schuur, C. Schädel, T. J. Bohn, E. J. Burke, G. Chen, X. Chen, P. Ciais,
G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, E. E. Jafarov, G. Krinner, P. Kuhry, D. M.
Lawrence, A. H. MacDougall, S. S. Marchenko, A. D. McGuire, S. M. Natali, D. J. Nicolsky,
D. Olefeldt, S. Peng, V. E. Romanovsky, K. M. Schaefer, J. Strauss, C. C. Treat, M. Turetsky.
2015. “A Simplified, Data-constrained Approach to Estimate the Permafrost Carbon–Climate
Feedback.” Phil. Trans. R. Soc. A, Special issue on Climate Feedbacks in the Earth System.
(Accepted with minor revisions)
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