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Motiviations RUBISCO

e Phosphorus (P) is an essential nutrient for plant growth, a low
concentration of soil P available to plants will limit the potential of
plants fo uptake CO, from the atmosphere. This effect is called P
limitation.

e More than 43% of global land is limited by P, only 18% is limited by
nitrogen (N), and 39% is N-P co-limited (Du et al. 2020)

e P limitation may reduce soil water consumption by 8-30% during wet
periods, thus increase the tolerance of the tropical ecosystem to
drought (Goll et al. 2018)

As the atmospheric CO2 concentration rises, the projected climate will
become warmer and more extreme. Therefore, it is important to study
the role of phosphorus limitation in carbon cycle-climate feedbacks.
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Global nitrogen and phosphorus limitation RUBISCO
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Figure: Map of terrestrial nitrogen and phosphorus limitation (Du et al., 2020, Nature Geoscience)
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Model and Experiments Rﬁz.go

The Energy Exascale Earth System Model (E3SM) version 1.1 (Burrows et al. 2020) is
used in this study. We conducted four experiments following the protocols of
C4MIP (Jones et al. 2016) with an active BGC model while holding all other forcings
at pre-industrial levels.

e PiControl (CTL): A pre-industrial control simulation with non-evolving
pre-industrial conditions.

e 1pctCO2BGC (BGC): the CO, concentrafion increases at 1%/yr for the BGC
model with the CO, concentration keeping pre-industrial level for the RAD
model

e 1pctCO2RAD (RAD): similar to 1pctCO2BGC, but vice versa

e 1pctCO2FULL (FULL): the CO, concentration increase at 1% /yr for the BGC
and RAD models

To study the effects of P on the global carbon cycle and feedbacks, we simulated
the E3SM with carbon-nitrogen (CN) and carbon-nitrogen-phosphorus coupling
(CNP) for each experiment.
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Strong interactions between P limitation and climate ng?o

(a) Correlatlon ANPP and APR BGC (b) Correlatlon ANPP and APR RAD (c) Correlation ANPP and APR FULL

(d) Correlatlon ANPP and ATAS BGC (e) Correlation ANPP and ATAS RAD
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Figure: Correlations between the NPP and precipitation (a-c) and temperature (d-f)differences
(CNP minus CN) in biogeochemically (a,d), radiatively(b,e), and fully coupled (c.f) 1pctCO2
%OAK RIDGE experiments, respectively. (Stippled area indicates significance in a 90% confidence level.)
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Cumulative net primary production RUBISCO
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Figure: the NPP differences between CNP and CN (CNP minus CN) for three
¥OAKRIDGE — experiments. The cumulative NPPs are relative to their PiControl values.
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Cumulative gross primary production RUBISCO
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Figure: the GPP differences between CNP and CN (CNP minus CN) for three
¥OAKRIDGE  experiments. The cumulative GPPs are relative to their PiControl values.
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Heterofrophic respiration RUBISCO
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Figure: the HR differences between CNP and CN (CNP minus CN) for three
¥OAKRIDGE  experiments. The cumulative HRs are relative to their PiControl values.
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Autotrophic respiration Ao
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Figure: the AR differences between CNP and CN (CNP minus CN) for three
¥OAKRIDGE  experiments. The cumulative ARs are relative to their PiControl values.
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Net ecosystem exchange RUBISCO
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Figure: the NEE differences between CNP and CN (CNP minus CN) for three
¥OAKRIDGE  experiments. The cumulative NEEs are relative to their PiControl values.
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Soil carbon RUBISCO
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Figure: the cSoil differences between CNP and CN (CNP minus CN) for three
¥OAKRIDGE  experiments. The cumulative cSoils are relative fo their PiControl values.
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P limitation-soil moisture feedbacks .fggo
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Plant N limitation (FPG_N) The larger the value, the less the limit ! Rﬁg;?o

(a) plant N limitation FPGy at 2xCO2 CNP (b) plant N limitation FPGy at 2xCO2 CN (c) diff plant N I|m|tat|on FPGN at 2xCO2(CNP-CN)
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Figure: plant N limitation at 2xCO2
and 4xCO2 for CNP (a,d) and CN
(b.e), respectively. Differences
between CNP and CN at (c,f),
between 4xCO2 and 2xCO2 at (g.h),

respectively
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Soil N limitation (FP|_N) The larger the value, the less the limit ! RUBISCO

(a) soil N limitation FPGy at 2xCO2 CNP (b) soil N limitation FPGy at 2xCO2 CN (c) diff soil N Ilmltatlon FPGN at 2xCO2(CNP-CN)

Figure: plant N limitation at 2xCO2
and 4xCO2 for CNP (a,d) and CN
(b.e), respectively. Differences
between CNP and CN at (c,f),
between 4xCO2 and 2xCO2 at (g.h),
respectively
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P limitation at 2x and 4xCO?2 the larger the value, the less the limit ! rusisco

(a) plant P limitation FPGp at 2xCO2 CNP (b) soil P limitation FPIp at 2xCO2 CNP
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Conclusions Rus.i'?o
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The feedbacks of the P limitation to climate are significant.

2. The 40%-80% variance of NPP differences between CNP and CN simulations can
be explained by precipitation and surface temperature differences between
CNP and CN at a 90% confidence level. It indicates that there is a strong
coupling between the P limitation and climate.

3. P limitation is strongest in the FULL experiment and weakest in the BGC
experiment.

4. N limitation will be the more dominant factor in the future in most areas of the
boreal region, East Asia, most areas of the US, the southern coastal areas of
Australia, and southern Argentina.

5. P limitation becomes weaker globally in the future due to the P limitation-soil
moisture feedback.

6. Though the global carbon uptake still decreases due to the direct effect of P
limitation, the P limitation-soil moisture feedback plays an important role when
the soil dries out with the increases in the atmospheric CO2. It will lead to more
carbon uptake in some dry regions. This feedback is particularly important in the
fropics, as the soil is expected to be drier with the CO, rising.
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