

Linking Plant Functional Traits and Carbon Processes to Evaluate Terrestrial Biosphere Models Based on A Traceability Framework

Jianyang Xia¹, Erqian Cui¹, Jian Zhou¹, Chengyu Bian¹, Ning Wei¹, Ying-ping Wang², Yiqi Luo³, MsTMIP & CMIP modelers

¹ School of Ecological and Environmental Sciences, East China Normal University (Shanghai, CN)

² CSIRO Oceans and Atmosphere (Victoria, AU)

³ Center for Ecosystem Science and Society, Northern Arizona University (Flagstaff, US)

August 20, 2021

Challenge:

Large uncertainty of land C cycle in Earth system models

Friedlingstein et al., 2020 ESD

IPCC AR6

(2021)

1850 1875 1900 1925 1950 1975 2000 Year

۰.

-60

12.0

Land Uptake (GtC/yr)

Climate Change 2021

ILAMB in IPCC AR6:

Improved model performance on land C cycle from CMIP5 to CMIP6

IPCC AR6, 2021 (Page 5-200)

Further model improvements:

A better parameterization of carbon cycle processes

Plant functional traits are fundamental parameters in current global carbon-cycle models

[•] Disturbances (e.g., erosion, land use change, and management)

Walker et al. 2021 New Phytologist

Further model improvements:

A better parameterization of carbon cycle processes

Key Question: Can we reduce the model uncertainty on land C cycle by an improved parameterization of plant functional traits?

Xia et al. 2017 JGR Biogeosciences

Further model improvements:

A better parameterization of carbon cycle processes

Key Question: Can we reduce the model uncertainty on land C cycle by an improved parameterization of plant functional traits?

Question 1

Can we link plant functional traits and land carbon cycle for model evaluation? Question 2

How to improve model parameterization of plant functional traits based on data?

Tool: <u>Traceability Analysis for Model Evaluation (TraceME)</u>

Xia *et al.,* 2013 GCB Luo *et al.,* 2017 BG Xia *et al.* 2020 GCB

Application of TraceME to CMIP6 models:

Baseline C residence time is a major uncertainty source in CMIP6 models

(Historical runs: 1850-2014)

Application of TraceME to CMIP6 models:

Baseline C residence time is a major uncertainty source in CMIP6 models

(Initial state: 1850)

• More parameter information of plant functional traits is useful for evaluating and understanding land C cycle uncertainty in CMIP6 models.

Plant functional traits and baseline C residence time

Do plant functional traits contribute to the model uncertainty on ecosystem C uptake?

 Uncertainty propagates between plant traits and ecosystem C processes

Do plant functional traits contribute to the model uncertainty on ecosystem C uptake?

$$\frac{d\mathbf{X}(t)}{dt} = \mathbf{u}(t)\mathbf{B} - \boldsymbol{\xi}(t)\mathbf{A}\mathbf{C}\mathbf{X}(t)$$

- Both data products and CMIP6 models have large uncertainty on terrestrial gross primary productivity (GPP).
- It is important to understand why GPP is differently simulated among the models.

Modeling results: MsTMIP project

- East Asian Monsoon (EAM) region is a large C sink at middle to low latitudes .
- GPP uncertainty is large in current terrestrial biosphere models.

Yu et al. 2014 PNAS

MsTMIP project: experimental design

(1) **Baseline simulations** \rightarrow constant environmental drivers

 $\mathbf{\sim}$

Order	Domain	Scenario	Climate	LULUC	Atm. CO ₂	Nitrogen
1		RG1	Constant	Constant	Constant	Constant
2		<mark>∱</mark> SG1	Time-varying (CRU+NCEP)			
3		SG2		Time-varying (Hurtt)		
4		SG3			Time-varying	
5		BG1				Time- varying

(2) Environmental impacts \rightarrow turn one environmental driver on at a time

Factorial analyses on impacts of environmental drivers:

- Climate (SG1 RG1) Land-use land-cover change (SG2 SG1)
- Atmospheric CO₂ concentrations (SG3 SG2) Nitrogen deposition (BG1 SG3)

Modeling uncertainty in the East Asian Monsoon region

- The inter-model variation in GPP across the EAM region stems from the initial states.
- Model structure and parameterization of plant traits are important uncertainty sources

Plant functional traits are important model uncertainty sources

 Specific leaf area has a large contribution to GPP uncertainty in most area of the EAM region.

 It is important to use data to constrain plant trait parameters in the models.

SLA: Specific leaf area

Fleaf: Fraction of leaf in vegetation biomass

 \mathbf{P}_{LAI} : Gross primary productivity per leaf area

Question 2: How to improve model parameterization of plant traits based on data?

Incorporation of trait acclimation and covariance to improve modeling of C processes

Two important types of plant traits for C cycle: Photosynthesis Photosynthetic capacity Leaf area Leaf nitrogen content Leaf life span Mortality Tree mortality rate Stem size Wood density ٠ ...

Leaf photosynthetic traits

Whether and how global environmental changes affect plant traits and their covariance?

18

Reich et al., 1997; Wright et al., 2014

Meta-analysis: Data of trait acclimation and covariance in experiments

Trait acclimation under global changes

- Plant functional traits are sensitive to global changes
- Trait acclimation could be represented as probability distributions
- Different acclimation directions of plant trait among global change factors

Various trait acclimation on the species level

- Plant functional traits are sensitive to global changes
- Trait acclimation could be represented as probability distributions
- Different acclimation directions of plant trait among global change factors
- Diverse directions of trait acclimation between species

Robust trait covariance over space under environmental changes

Slope: NS

Slope: NS

Slope: NS

Elevation: ***

Elevation: NS

Elevation: NS

- Plant functional traits are sensitive to global changes
- Trait acclimation could be represented as probability distributions
- Different acclimation directions • of plant trait among global change factors
- Diverse directions of trait acclimation between species
- A small change in trait covariance across species

A modelling experiment:

Incorporating trait acclimation and covariance into a global process-based model

A modelling experiment:

Incorporating trait acclimation and covariance can greatly change the modeled response of net primary productivity to CO₂ enrichment

Mortality traits

Covariance between stem size and tree mortality rate in a 20-ha subtropical monsoon evergreen forest

Mortality traits

A U-shaped size-dependent mortality pattern in the species-rich forest

Lu et al., 2021 Journal of Ecology

Dynamic vegetation models use different traits to simulate mortality rate

Plant mortality algorithms in models

Mortality algorithms	Description	Model acronym	
Productivity dependence	No explicit concept of mortality; biomass reduced via declining productivity	TRIFFID	
Deckground rate	Mortality is set at a constant rate (approximately 1-2% yr ^{-1}).	ORCHIDEE, BIOME-BGC, CLM, ED	
Background rate	Mortality increases as wood density declines	ED	
Age dependence	Death increases with age approaches the PFT-specific maximum	ForClim, CTEM, SDGVM	
Size dependence	U-shaped mortality pattern for canopy trees	LM3-PPA	
Growth efficiency threshold	Mortality occurs when biomass increment per unit leaf area falls below a quantitative threshold that varies between models.	SDGVM, LPJ-GUESS, CLM-DGVM, SEIB, ORCHIDEE, SDGVM, CLM 3.0	
Shading/competition	Mortality increases as a function of canopy cover	ED, ED2, LPJ-GUESS, CLM-DGVM, SEIB, ORCHIDEE	
Negative productivity	Death occurs if annual net productivity < 0.0 g	LPJ-GUESS, CLM-DGVM, SEIB, ORCHIDEE, CTEM	
Carbon starvation	Mortality is a function of carbohydrate storage per unit leaf biomass	ED, CLM(ED), LM3-PPA	
Climate tolerance	Death occurs if the average climate exceeds predefined monthly climatic tolerances	LPJ-GUESS, CLM-DGVM, SEIB, ORCHIDEE, CTEM	
Heat stress threshold	Mortality is a function of the number of days per year in which the average temperature exceeds a threshold temperature, and the number of degrees by which this threshold is exceeded.	LPJ-GUESS, CLM-DGVM, SEIB, ORCHIDEE, CTEM, ED	
Hydraulic failure	Mortality is a function of carbohydrate storage per unit leaf biomass	CLM(ED), LM3-PPA	
Fire disturbance	Mortality is a function of fuel load, litter moisture	ED, SEIB, LPJ-GUESS, CLM(ED) , LM3- PPA	

Edited from McDowell *et al.* (2011)

A literature survey on empirical trait-based studies

More studies are focusing on C uptake than decomposition processes

Number of studies

Summary

The model uncertainty on land C cycle can be further reduced by an improved parameterization of plant functional traits.

- Can we link plant functional traits and land carbon cycle for model evaluation?
- Yes, we can trace baseline C residence time and GPP to some key plant traits.
- Parameterization uncertainty can propagate between traits and to C processes.
- It is still challenging to evaluate CMIP models without details of trait parameters.
- ✓ How to improve model parameterization of plant functional traits based on data?
- Explore probability distributions of trait acclimations to environmental factors
- More data of community-level trait covariance on both of spatial and temporal scales
- Model outputs of plant functional traits associated with ecosystem processes

Thanks for your listening!

-

C.III