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Challenge:

Large uncertainty of land C cycle in Earth
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ILAMB in IPCC ARG:

Improved model performance on land C cycle from CMIP5 to CMIP6
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Further model improvements:

A better parameterization of carbon cycle processes

Plant functional traits are fundamental parameters in current global carbon-cycle models

Plant growth
Primary production and allocation
~ N\
Surface litter inputs Root inputs
Litter types (leaf, wood), J L Rhizodeposition, growth and J
mortality across soil layers

quality, and amount

1 W)

Stabilization ymposition

* Environmental variables (e.g., temperature, moisture, oxygen,
| and pH across soil profile, space, and time)
* Litter quality (e.g., lignin, cellulose, nitrogen, and their ratios)
* Soil properties (e.g., aggregates, porosity, specific surface areas
of minerals, and mineralogy)
* Microbial attributes (e.g., biomass, taxa, community structure,
and physiological activities and adjustments)
'+ Disturbances (e.g., erosion, land use change, and management)

Luo & Schuur. 2020 GCB Walker et al. 2021 New Phytologist 4



Further model improvements:

A better parameterization of carbon cycle processes

Key Question: Can we reduce the model uncertainty on land C cycle by an improved
parameterization of plant functional traits?
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Further model improvements:

A better parameterization of carbon cycle processes

Key Question: Can we reduce the model uncertainty on land C cycle by an improved
parameterization of plant functional traits?

Question 1 Question 2
Can we link plant functional How to improve model
traits and land carbon cycle for parameterization of plant

model evaluation? functional traits based on data?



Tool: Traceability Analysis for Model Evaluation (TraceME)
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Application of TraceME to CMIP6 models:

Baseline C residence time is a major uncertainty source in CMIP6 models

(Historical runs: 1850-2014)

Zhou et al. 2021 Ecological Processes 8



Application of TraceME to CMIP6 models:

Baseline C residence time is a major uncertainty source in CMIP6 models

(Initial state: 1850)

* More parameter information of plant functional traits is useful for evaluating and understanding
land C cycle uncertainty in CMIP6 models.



Plant functional traits and baseline C residence time
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Do plant functional traits contribute to the model uncertainty on

% = u(t)B — E(t)ACX(t)

» Uncertainty propagates between plant
traits and ecosystem C processes

ecosystem C uptake?
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Do plant functional traits contribute to the model uncertainty on
ecosystem C uptake?
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Modeling results: MsTMIP project

* East Asian Monsoon (EAM) region is a large C sink at middle to low latitudes .

* GPP uncertainty is large in current terrestrial biosphere models.
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(1 Baseline simulations = constant environmental drivers

MsTMIP project: experimental design

Order | DomaimN \Scenario Climate LULUC Atm. CO, Nitrogen
1 = RG1 Constant
Constant
2 A SG1 Constant
Constant
3 /4 SG2
Time-varying
4 /ﬂ SG3 (CRU+NCEP) | Time-varying
5 71 BGL (Hurtt) Time-varying Time-
/ varying

@ Environmental impacts — turn one environmental driver on at a time

Factorial analyses on impacts of environmental drivers:
Land-use land-cover change (SG2 - SG1)

* Climate (SG1 - RG1)

« Atmospheric CO, concentrations (SG3 - SG2)

Nitrogen deposition (BG1 - SG3)
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Modeling uncertainty in the East Asian Monsoon region

The inter-model variation in GPP across the EAM region stems from the initial states.

Model structure and parameterization of plant traits are important uncertainty sources
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Plant functional traits are important model uncertainty sources
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_________________________________________________________________________________________________________________________________________

Incorporation of trait acclimation and covariance to improve modeling of C processes

Trait covariance :j} Parameterization I:f‘> Simulation Two important types of
[ i SLA trait x b plant traits for C cycle:
SLA
Na;: \L‘L B Photosynthesis
‘}CmaXaraa = * Photosynthetic capacity
> . é * Leafarea
WD — mortality * Leaf nitrogen content
. " » Leaf life span
wscalmin \ SLA, trait x ) . ...
. = — - / B Mortality
Parameter set ' 2 e  Tree mortality rate
§ set 2 *\g + Stem size
O set 3 TS * Wood density
SLA, trait x seti L 2 .
\ = L. —

Edited from Sakschewski et al. Nature Climate Change (2016) 17



Leaf photosynthetic traits

Whether and how global environmental changes affect plant traits and their covariance?
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Meta-analysis: Data of trait acclimation and covariance in experiments
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sensitive to global changes

* Trait acclimation could be
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e Different acclimation directions
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Alog[Am (nmol g™ s™)]

Various trait acclimation on the species level
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e Plant functional traits are
sensitive to global changes

* Trait acclimation could be
represented as probability
distributions

e Different acclimation directions
of plant trait among global
change factors

* Diverse directions of trait
acclimation between species

Cui et al., 2020 Nature Communications



Robust trait covariance over space under environmental changes
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A modelling experiment:

Incorporating trait acclimation and covariance into a global process-based model

Simulation SLA-N, covariance Description
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A modelling experiment:

Incorporating trait acclimation and covariance can greatly change the modeled
response of net primary productivity to CO, enrichment

JEENESS A= ESaaa_.> 4JEENTTEE . > 4JEENTTE T

-900 -600 -300 0 300 600 900 -150 -100 -50 0 50 100 150 -450 -375 -300 0 300 375 450
A NPP (gC m2yr1) ANPP (gC m2yr) A NPP (gC m2yr)
+CO, +CO, +CO,
+Acclimation +Acclimation

+Covariance

24



Mortality traits

Covariance between stem size and tree mortality rate in a 20-ha
subtropical monsoon evergreen forest

ividuals:




Mortality traits

A U-shaped size-dependent mortality pattern in the species-rich forest
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Dynamic vegetation models use different traits to simulate mortality rate

Plant mortality algorithms in models

Mortality algorithms

Productivity dependence

Background rate

Age dependence
Size dependence

Growth efficiency threshold

Shading/competition

Negative productivity
Carbon starvation

Climate tolerance

Heat stress threshold

Hydraulic failure

Fire disturbance

Description
No explicit concept of mortality; biomass reduced via declining productivity

Mortality is set at a constant rate (approximately 1-2% yr1).

Mortality increases as wood density declines

Death increases with age approaches the PFT-specific maximum
U-shaped mortality pattern for canopy trees

Mortality occurs when biomass increment per unit leaf area falls below a

guantitative threshold that varies between models.

Mortality increases as a function of canopy cover

Death occurs if annual net productivity <0.0 g

Mortality is a function of carbohydrate storage per unit leaf biomass

Death occurs if the average climate exceeds predefined monthly climatic tolerances
Mortality is a function of the number of days per year in which the average

temperature exceeds a threshold temperature, and the number of degrees by
which this threshold is exceeded.

Mortality is a function of carbohydrate storage per unit leaf biomass

Mortality is a function of fuel load, litter moisture

Model acronym

TRIFFID

ORCHIDEE, BIOME-BGC, CLM, ED
ED

ForClim, CTEM, SDGVM
LM3-PPA

SDGVM, LPJ-GUESS, CLM-DGVM, SEIB,
ORCHIDEE, SDGVM, CLM 3.0

ED, ED2, LPJ-GUESS, CLM-DGVM, SEIB,
ORCHIDEE

LPJ-GUESS, CLM-DGVM, SEIB,
ORCHIDEE, CTEM

ED, CLM(ED), LM3-PPA
LPJ-GUESS, CLM-DGVM, SEIB,
ORCHIDEE, CTEM

LPJ-GUESS, CLM-DGVM, SEIB,
ORCHIDEE, CTEM, ED
CLM(ED), LM3-PPA

ED, SEIB, LPJ-GUESS, CLM(ED) , LM3-
PPA

Edited from McDowell et al. (2011) |



A literature survey on empirical trait-based studies

More studies are focusing on C uptake than decomposition processes

% = u(t)B — §(HACX(?)
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Summary

The model uncertainty on land C cycle can be further reduced by an improved
parameterization of plant functional traits.

v Can we link plant functional traits and land carbon cycle for model evaluation?

* Yes, we can trace baseline C residence time and GPP to some key plant traits.
* Parameterization uncertainty can propagate between traits and to C processes.

e Iltis still challenging to evaluate CMIP models without details of trait parameters.

v" How to improve model parameterization of plant functional traits based on data?

* Explore probability distributions of trait acclimations to environmental factors
* More data of community-level trait covariance on both of spatial and temporal scales

* Model outputs of plant functional traits associated with ecosystem processes

29
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