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Talk Outline

* Intro

 FACE Model Data Synthesis — 10 yr forest
piomass responses to elevated CO,

« Multi-assumption modelling (MAAT)

 Model GPP evaluation against GPP
proxies using PCA
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Inherent uncertainty in ecosystem models precludes
predictive understanding

Forest stand scale C uptake
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The first step towards predictive understanding is to
properly characterise uncertainty and identify its sources



The first step towards predictive understanding is to
properly characterise uncertainty and identify its sources

e Alternative trait values
(uncertain parameters)



The first step towards predictive understanding is to
properly characterise uncertainty and identify its sources

e Alternative hypotheses
(uncertain process-knowledge)



Hypothesis

A mechanistic description of how a process works.
synonyms:

* process representation

* model structure

e assumption (not exactly)
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Systems are composed of multiple processes
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Competlng hypotheses can exist for each process

Biological
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Resulting in multiple possible models of the system

Model of
system

Input

Output

Alternative Process
Hypotheses
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. but alternative models are possible

Model of
system

Input

Output

Alternative Process
Hypotheses

18 possible system models
In this simple example
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FACE Model Data Synthesis

A model inter-comparison evaluated
against FACE data
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Biomass responses to eCO,

; 1
A0
Rl

Lipmes 2

Rhinelander ORNL Duke KSC

MAT [°C] 6.0 (0.8) 14.8 (0.9) 14.8(0.6) 22.1(0.4)
MAP [mm] 662 (122) 1221 (218) 1081 (168) 1094 (207)
MAPET [mm] 1187 (178) 1483 (78) 1494 (53) 2391 (156)

Ml 0.57(0.15) 0.74(0.17) 0.65(0.14) 0.46 (0.10)

MAT — mean annual temperature, MAP — mean annual precipitation, MAPET — mean annual
potential evapotranspiration calculated using the Penman-Monteith equation assuming zero canopy OAK RIDGE
resistance. Ml — Moisture index (MAP/MAPET). Standard deviation in parentheses. National Laboratory
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CABLE CLM4 DAYCENT EALCO ED V2.1

> : i : : :

CWNE CWNE CWN CWNE CWNE
G’ DAY ISAM LPJ-GUESS SDGVM TECO

CWNE, CWNE ’ CWNE

Schematic of the 11 models of the first phase of the FACE Model Data Synthesis project
showing common processes but different ways in which those processes are represented
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Walker et al. 2014 JGR Biogeosci.



10 year response of NPP and Biomass C increment to eCO,

Cumulative NPP (cNPP) response

ﬁmiﬁ - Biomass C increment (Cinc,,,) response
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Meta-analysis using mixed-effects regression models

Random effects

model response Fixed effect parameter SEM re.site re.Intercept re.slope

1 NPP Intercept 0.723  0.133  Rhin. 0.516 (0.481-0.556) -
eCO; 0.164 0.031 ORNL 0.814 (0.773-0.849) -

Duke 1.050 (1.003-1.086) -

KSC 0.511 (0.486-0.540) -

2  Cincyg Intercept 3.616 1.156  Rhin. 3.320 (2.995-3.652) -
eCO; 1.045 0.258 ORNL 4.047 (3.698-4.376) -

Duke 6.294 (5.913-6.585) -

KSC 0.801 (0.825-0.614) -

16 Walker et al. In Review
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Meta-analysis using mixed-effects regression models

Random effects

model response Fixed effect parameter SEM re.site re.Intercept re.slope
3 Cincwg Intercept -0.332 1.422  Rhin. -0.245 (-1.055-0.627) 0.6427 (0.504-0.764)
cNPP 0.546" 0.173 ORNL 3.205 (-0.436-3.849) 0.144" (0.070-0.553)
Duke -2.103 (-2.704—--0.985)  0.873" (0.767-0.933)
KSC -2.183 (-2.640--1.720)  0.526" (0.460-0.594)

" Indicates the biomass production rate, i.e. the slope of the assumed linear relationship between Cincye; and cNPP.

Walker et al. In Review
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Plot level relationship of Cinc,., to cNPP
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Meta-analysis using mixed-effects regression models

Random effects

model response Fixed effect parameter SEM re.site re.Intercept re.slope
3 Cincyg Intercept -0.332 1.422  Rhin. -0.245 (-1.055-0.627) 0.6427 (0.504-0.764)
cNPP 0.546" 0.173 ORNL 3.205 (-0.436-3.849) 0.144" (0.070-0.553)
Duke -2.103 (-2.704—--0.985)  0.873" (0.767-0.933)
KSC -2.183 (-2.640--1.720)  0.526" (0.460-0.594)
No direct CO, effect on Cinc,,

" Indicates the biomass production rate, i.e. the slope of the assumed linear relationship between Cincye; and cNPP.

Walker et al. In Review



Cinc,, response can be predicted by cNPP response and
slope of the relationship

A
o
dCinc,, :
; = g 10F &
O 8r
2
g 6 |-
2
5
aCO, eCO, 4 r
Rhin. V V
ORNL A A 2T
DUke D D O 12 l
ksc @ @ 15

cumulative NPP [kgC m™]
20 Walker et al. In Review



21

Meta-analysis using mixed-effects regression models

model response Fixed effect parameter SEM

Random effects

re.site

re.Intercept re.slope

4 W

Intercept
cNPP

0.365
0.020

0.121
0.005

Rhin.
Duke
KSC

0.476 (0.435-0.507) -
0.480 (0.417-0.529) -
0.139 (0.101-0.172) -

Walker et al. In Review



Assuming wood allocation dominates veg turnover,
biomass production rate can be calculated:

dCinc,,eg_ W 42 dfWw PP
aenpp - IWat 2 upp €
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Model ensemble Cinc, ., response
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Model ensemble Cinc

24

- NN W B

Cincyeg response [kng_Z]

|

- O

cNPP response [kng_z]

N w A

veg

response

iiil

= i T

. 8 ¢ 1

-1 F

RHIN ORNL DUKE KSCO RHIN ORNL DUKE KSCO
dCinc,,
. g
Cinc = AcNPP.

veg dcNPP

]

[

dCincyegq

—
o

(&)

© dcNPPo

o

b

'

RHIN

ORNL DUKE KSCO

OAK RIDGE

National Laboratory



Model ensemble Cinc, ., response
dCincyeg dfWw
= fW, + 2 cNPP

acnep et 2 onpp
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NPP & N response to eCO,, Duke

Initial eCO,, response (%)
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Zaehle et. al. 2014 New Phyt.
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NPP & N response to eCO,, Duke

Initial eCO,, response (%)

27

40 -

30

20

10 -

O_

-10 -

ANPP

)

ANup

ANUE

— 40

— 30

— 20

— 10

— 0

— =10

NPP = Nup x NUE

Models generally captured the initial NPP
response response but confounded the Nup
response with the NUE response.
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NPP & N response to eCO,, Duke
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NPP increased by the end of the experiment, all but one model predicted a
decrease. Increased Nup was not sustained by the models
28 Zaehle et. al. 2014 New Phyt.
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Changes in C
allocation In
response to
eCO,, Duke
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% Change in Allocation Fractions (Ele-Amb)

(a) Fixed Coefficients
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(d) Canopy optimisation
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FACE-MDS Phase-1 Summary

Models treated
LMA as a

S constant.
Model variability

in simulating
drought effects.

Model variability in

rainfall interception.
Drought Rainfall
interception
Water use

efficiency \ \ ,
/

Should be Stomatal 4
LMA Photosynthesis
Model variability in

proportional to conduct-
the ratio of light- or

Ca ance
CO,-limited
photosynthesis.

Model C:N

stoichiometry too )
flexible. Foliar N

Transpir-
ation

_ Model sensitivity
Large model to stomatal

variability in conductance
wood turnover. varied.

Turnover

\

Dynamic allocation
Priming assumptions
performed best.

Cand N

Models under- .
coupling

estimated N should be
uptake. Better estimates of flexible.

N losses needed OAK RIDGE
Medlyn et al. 2015 Nature Clim. Change RRRn oy



FACE-MDS 10 yr Biomass Summary

A sustained long-term stimulation of forest biomass in
response to CO, concentrations predicted for the middle of the
century was clearly demonstrated.

* Model
—AtO

INng this Is site specific:

RNL uncertainty was too high in 10 year biomass response

— At KSC the temperature by CO, interaction was not observed

— At Rhin and Duke NPP was under-predicted due to inability to
iIncrease N uptake AND allocation response to CO, was too low

31
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MAAT & multi-hypothesis
modeling
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Traditional models use only single hypotheses
Input

Model of
system

Output

OAK RIDGE

nal Laboratory



34

Multi-hypothesis modeling

Model of
system

Input

Output

Alternative Process
Hypotheses

18 possible system models
can be combined

OAK RIDGE

nal Laboratory



Multi-Assumption Architecture & Testbed (MAAT)

« A multi-hypothesis software framework developed to allow system model

35

configuration with process hypotheses, parameters (traits), and boundary
conditions on-the-fly during runtime

Designed to analyze the variation in system model outputs caused when multiple
competing hypotheses exist for multiple processes (considers parameter
variability)

Framework is general and not system specific
Currently applied to modelling leaf-scale photosynthesis

Can mimic ALM, CLM, LM3, JULES, BETHY, + others ... or can create and run
all possible model combinations

Employs a novel algorithm for process-level global sensitivity analysis (Dal, et al.
2017 WRR), as well as for global parameter sensitivity analysis (Saltelli et al.,
2010)

OAK RIDGE

National Laboratory

Walker et al. In Prep



Mimicking & unifying CMIP5 models
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Mimicking & unifying CMIP5 models
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Mimicking & unifying CMIP5 models
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he first step towards predictive understanding iIs to
properly characterise uncertainty and identify its sources

&JAGU PUBLICATIONS

Water Resources Research

TECHNICAL A new process sensitivity index to identify important system

REPORTS: METHODS processes under process model and parametric uncertainty
10.1002/2016WR019715

Heng Dai® '*/, Ming Ye2 "/, Anthony P. Walker3 -/, and Xingyuan Chen?

e Alternative hypotheses
(uncertain process‘knowledge)



Graph of the enzyme kinetic model of C3 photosynthesis:
Carboxylation
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Graph of the enzyme kinetic model of C3 photosynthesis:
Carboxylation

AAMNAL DA

Electron Transport

V Electron transport

« Farquhar & Wong 1984
 Collatz et al. 1991
 Harley et al. 1992
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Parameter

Yellow outlined

processes/parameters
were varied in the P

sensitivity analysis

Limiting Cycle
« Farquhar et al 1980
» Collatz et al 1991
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Variability in carbon assimilation

A [umolm 28]
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Process Sensitivity Index against CO,
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Atmospheric CO, concentration [molmol™]

Walker et al. in prep
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Parameter Sensitivity Index
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Evaluation of global GPP
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GPP
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PC 2 loading

8 F i
ol N PCA as a model evaluation tool
04 F
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OAK RIDGE
National Laboratory
48 Walker et al. (2017) New Phyt.
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PCA suggests the first mode of
spatial GPP variability is driven by
precipitation

PC1 Scores

S
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PC4 segregates SIF based GPP
from precipitation
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Quick Summary
* Process based model analysis is useful and interesting

* A number of methods are out there including:
— Variable decomposition

— Comparison against simple models
(not shown, but used in FACE-MDS)

— Multi-assumption modelling

— PCA (not strictly process based, but can be used to observed

patterns and support process based hypotheses)

52
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Thanks to you, collaborators, and
sponsors

OAK RIDGE

National Laboratory




94

Single process multi-hypothesis modeling

Model of
system

Input

Output

Alternative Process
Hypotheses
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... but additional processes come with the cost of
additional uncertainty & model complexity

Model of
system

Input

Output

Alternative Process
Hypotheses

54 possible system models with
a single additional process

OAK RIDGE

National Laboratory
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