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AI was a better player in very complex 
games
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• AlphaGo 4:1 Lee Sedol

• Abstract
• Extremely complex 

mapping
• Once AI figures it out, 

we are a goner
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Case studies
 Soil Moisture Active Passive (SMAP)

 Launched recently (2015/04)
 2~3 days revisit time 
 Senses moisture-dependent top surface soil

 Streamflow modeling
 Daily data 
 Accompanying attributes
 With reservoirs, in data-sparse regions

 Dissolved oxygen
 Water temperature
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Rainfall seasonality for USA basins



A hydrologic model w/o structural 
assumptions…

LSTM model
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Application flythrough



7Forecast for (i) soil moisture (ii) streamflow

?

Gaps?

https://sites.google.com/view/mhpi/locust

Application flythrough

https://sites.google.com/view/mhpi/locust


Sparse-data region
 Transfer learning
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Ma et al., WRR, accepted, preprint doi: 10.1002/essoar.10504132.1

1 year local data 4-year local training

Application flythrough



Reservoir

 Modeling reservoir over CONUS
 Basins with small reservoirs (<a month 

of flow) can be directly simulated.
 They are different from reference 

basins!
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Ouyang WY et al., Journal of Hydrology, accepted, preprint: https://arxiv.org/abs/2101.04423

Application flythrough



Dissolved oxygen 10Application flythrough



Stream water temperature model 11Application flythrough



Data synergy and data scaling

 Deep learning (DL) inherently works better with bigger data

 Here we demonstrate the virtuous scaling of DL with big data

 Examples:
(1) Direct data-driven LSTM for (i) soil moisture; (ii) streamflow

(2) differentiable Parameter learning for (i) soil moisture; (ii) CAMELS 
streamflow; (iii) global prediction in ungauged basins.
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Data synergy 13

 Global model > Local model
 Global model w/ more diverse 

data is an inherent advantage 
of using DL



Having dissimilar examples are 
good!
 Even for the same 

amount of training 
data, DL models prefer 
more dissimilar training 
examples.

14

Fang et al.
https://arxiv.org/abs/2101.01876



Interactions w/ ecosystem/biogeochemistry

How about variables we cannot observe 
accurately on large scales?
 ET, Groundwater, deeper soil moisture?

From parameter calibration to 

We calibrated VIC model using SMAP data and the 
DL-based dPL scheme.

A knowledge learning opportunity!

differentiable parameter learning (dPL)

Hydrologic model
e.g., VICNetwork Outputs

Parameters



Parameter learning (dPL) -- results

• Stronger than SCE-UA!
• Saves O(104) computation!
• Now capable of modeling other 

variables such as ET and/or streamflow

More efficient and scales 
better with more data!



Parameter learning (fPL) -- results

• Stronger than SCE-UA!
• Saves O(104) computation!
• Now capable of modeling other 

variables such as ET and/or streamflow

Tsai et al. 2020, half preprint, https://arxiv.org/abs/2007.15751



Comparing w/ MPR
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Comparing with 
Beck et al. 2020

Comparing with regionalization schemes

CAMELS – temporal generalization Global PUB – spatial generalization, using HBV



Virtuous scaling curves of dPL 19

Each gridcell gets better service+ Economies of scale!



Conclusion

 DL gains its strength from big data, and behaves differently 
depending on training data quantity.

 DL models prefer to *see* data with diversity and differences 
(although not irrelevantly different). It does NOT prefer 
homogeneous training data.

 DL powered schemes like LSTM or parameter learning may have a 
virtuous scaling curve where everything becomes better with more 
data.

 This encourages the community to share data and *ride the scaling 
curve up* together!
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