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AI was a better player in very complex 
games
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• AlphaGo 4:1 Lee Sedol

• Abstract
• Extremely complex 

mapping
• Once AI figures it out, 

we are a goner

Natoms, universe~=1082.
Ngo=10360



3



Case studies
 Soil Moisture Active Passive (SMAP)

 Launched recently (2015/04)
 2~3 days revisit time 
 Senses moisture-dependent top surface soil

 Streamflow modeling
 Daily data 
 Accompanying attributes
 With reservoirs, in data-sparse regions

 Dissolved oxygen
 Water temperature
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Rainfall seasonality for USA basins



A hydrologic model w/o structural 
assumptions…

LSTM model
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(optional) Land Surface 
Model (Noah) solutions
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(x)

(y)

𝒚𝒚 = 𝑓𝑓(𝒙𝒙,𝑨𝑨)



6

Forecast for streamflow
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Application flythrough



7Forecast for (i) soil moisture (ii) streamflow

?

Gaps?

https://sites.google.com/view/mhpi/locust

Application flythrough

https://sites.google.com/view/mhpi/locust


Sparse-data region
 Transfer learning
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Ma et al., WRR, accepted, preprint doi: 10.1002/essoar.10504132.1

1 year local data 4-year local training

Application flythrough



Reservoir

 Modeling reservoir over CONUS
 Basins with small reservoirs (<a month 

of flow) can be directly simulated.
 They are different from reference 

basins!
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Ouyang WY et al., Journal of Hydrology, accepted, preprint: https://arxiv.org/abs/2101.04423

Application flythrough



Dissolved oxygen 10Application flythrough



Stream water temperature model 11Application flythrough



Data synergy and data scaling

 Deep learning (DL) inherently works better with bigger data

 Here we demonstrate the virtuous scaling of DL with big data

 Examples:
(1) Direct data-driven LSTM for (i) soil moisture; (ii) streamflow

(2) differentiable Parameter learning for (i) soil moisture; (ii) CAMELS 
streamflow; (iii) global prediction in ungauged basins.
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Data synergy 13

 Global model > Local model
 Global model w/ more diverse 

data is an inherent advantage 
of using DL



Having dissimilar examples are 
good!
 Even for the same 

amount of training 
data, DL models prefer 
more dissimilar training 
examples.
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Fang et al.
https://arxiv.org/abs/2101.01876



Interactions w/ ecosystem/biogeochemistry

How about variables we cannot observe 
accurately on large scales?
 ET, Groundwater, deeper soil moisture?

From parameter calibration to 

We calibrated VIC model using SMAP data and the 
DL-based dPL scheme.

A knowledge learning opportunity!

differentiable parameter learning (dPL)

Hydrologic model
e.g., VICNetwork Outputs

Parameters



Parameter learning (dPL) -- results

• Stronger than SCE-UA!
• Saves O(104) computation!
• Now capable of modeling other 

variables such as ET and/or streamflow

More efficient and scales 
better with more data!



Parameter learning (fPL) -- results

• Stronger than SCE-UA!
• Saves O(104) computation!
• Now capable of modeling other 

variables such as ET and/or streamflow

Tsai et al. 2020, half preprint, https://arxiv.org/abs/2007.15751



Comparing w/ MPR
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Comparing with 
Beck et al. 2020

Comparing with regionalization schemes

CAMELS – temporal generalization Global PUB – spatial generalization, using HBV



Virtuous scaling curves of dPL 19

Each gridcell gets better service+ Economies of scale!



Conclusion

 DL gains its strength from big data, and behaves differently 
depending on training data quantity.

 DL models prefer to *see* data with diversity and differences 
(although not irrelevantly different). It does NOT prefer 
homogeneous training data.

 DL powered schemes like LSTM or parameter learning may have a 
virtuous scaling curve where everything becomes better with more 
data.

 This encourages the community to share data and *ride the scaling 
curve up* together!
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