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Motivation

Climate deniers have linked less than complete certainty with complete 

ignorance

Efforts to improve certainty has led to advanced subgrid parameterization 

and increased complexity and resolution

Increasing complexity of ESMs sometimes increases assumptions and 

uncertainty

To improve model development, there is an increasing need to benchmark 

contemporary model outputs with observational datasets and evaluate model 

projections



Two important areas introducing uncertainties to mBGC/Ocean

models:

● Air-sea Interface and fluxes of mass and energy

● Ocean Biogeochemical control on atmospheric chemistry

○ What are the marine biogeochemical controls on the release of 

photochemically reactive gases into the atmosphere?  

○ How will future changes in ocean biogeochemistry and anthropogenic 

emissions (NOX, VOCs) interact to influence tropospheric photochemistry 

and stratospheric ozone? 



Earth’s energy balance and albedo

Total albedo ~ 30 
%
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AEROSOL EFFECTS

DIRECT EFFECT

•Scattering of sunlight 

•Absorb solar radiation 

• Contributes to Earth’s Albedo

INDIRECT EFFECT

Impact on cloud microphysical process

•Particles on which cloud droplets condense or 

ice nucleate

•Composition, size and supersaturation needed to form  

CCN and IN, leading to the formation of cloud droplets

•Cloud lifetime and cloud cover

•Contributes to Earth’s albedo more than direct effect



Aerosols have the 

largest uncertainty 

with respect to 

radiative forcing



Challenges leading to aerosol uncertainties

•Aerosols can exist with either single or multiple components, 

organic, inorganic, biogenic and/or anthropogenic

•The ability of an aerosol to form CCN or IN is also a function of its 

composition

•Formation of CCN through inorganic material is well understood, 

but organic materials are much more complex

•Understanding the mechanism of CCN and IN formation with  

organic components is necessary to reduce the uncertainty 

associated with aerosol and improve climate change prediction



Kloster et al. 2007

CLAW Hypothesis



Uncertainty in Ocean Contribution to the Marine Boundary Layer Aerosol Budget

45 per cent of the variance of aerosol forcing since about 1750 arises from uncertainties in natural 

emissions

Accurate representation of natural background aerosols is critical for improved assessment of direct 

and indirect anthropogenic aerosol forcing

 Reduction of the uncertainties over the representation of natural aerosols in climate models requires 

improved quantification of number, size distribution, chemical composition, and hygroscopic 

properties of aerosol in the marine boundary layer (MBL)

Magnitude and sources of uncertainty  in global mean 

aerosol indirect forcing (a) Global mean forcing (b) 

Global monthly mean forcing variance (green, Nat; pink, 

anthr; blue, aerosol processes); Carslaw et al. 2013



EQUATIONS:

• Flux parameterization using Nightingale et al. [2000]

• Schmidt equation derived from Saltzman and King [1993]

INPUTS: 

• Climatology DMS data from Lana et al. [2011]

• Climatology SST data from WOA (2013v2)

• Climatology wind data from NCEP/NCAR reanalysis database

Approach to DMS flux simple empirical model



Calculating Sea-Air Flux of DMS

• F = k (Cw – Ca)

Where F = Flux (mol/sec/m2)

k = Piston velocity (m/s)

Cw = DMS concentration on the ocean surface (mol/m3)

Ca = DMS concentration in air (mol/m3)

• k = (0.333U10 + 0.222(U10)
2) (600/Sc)1/2

Where U10 = Wind speed at 10 meters above sea surface 

Sc = Schmidt value for diffusivity of DMS in sea water

• Sc = 2674.0 – 147.12T + 3.726T2 – 0.038T3

Where T = Temperature

Nightingale et al. 2000 and Saltzman and King 1993



Annual global mean climatology of DMS concentrations (nM), Extract from Lana et al., 2011



Dataset Temporal

Coverage

Spatial Coverage Variables Reference

WOA

Monthly

Climatology

Globally Gridded and 

Layered no3, po4, si, o2, sos, tos [57,58]

SeaWIFS Monthly Climatology Globally Gridded chl [59]

NCEP Reanalysis

Monthly

Climatology Globally Gridded sfcWind [60]

Boyer Montegut

Monthly

Climatology Globally Gridded omlmax [61]

OSU

Monthly

Climatology Globally Gridded intpp [62]

Lana

Monthly

Climatology Globally Gridded dms [14]

Table 1: Observational Dataset incorporated into IOMB to benchmark various model outputs. 

All ocean data were encoded in the 4-dimensional CF compliant format. All variable naming and abbreviation follows CMIP5 convention. 



Figure 1: Benchmarking results showing absolute and relative scores, computed between five ESMs



CMIP5 models with mBGC give reasonable performance with respect to a 

benchmark global temporal mean of MLD - results are within 10m of 

observational data.

Nutrient concentrations in the High Nutrient Low Chlorophyll (HNLC) 

region of the eastern tropical Pacific are lower in CMIP5 models when 

compared with WOA datasets.

Global average emission of 28.1 (17.6 - 34.4) Tg of S yr-1 was estimated 

by Lana et al. 2011

Using IOMB, we estimate a total value of 30.6 Tg of Sulfur transferred 

from the ocean into the MBL annually in the form of DMS gas.



Figure 2: Nitrate (Nit), Net Primary Production (NPP) and Dimethylsulfide (DMS) surface mean bias . Three 

ESMs with DMS concentrations were considered: HadGEM2-ES, MPI-ESM-MR and MPI-ESM-LR.



Figure 3: (a) Nitrate (b) Net Primary Production and (c) Dimethylsulfide (DMS) spatial Taylor 

diagrams. 

CMIP5 Models

HadGEM-ES      =   34.3

MPI-ESM-MR     =   39.2

MPI-ESM-LR      =   42.3

Global average emission of 28.1 (17.6 - 34.4) Tg of S yr-1

Estimate from CMIP5 Models wind and 

SST

HadGEM-ES      =   21.1

MPI-ESM-MR     =   22.3

MPI-ESM-LR      =   23.8



Figure 4: (a) Temporally integrated period mean and (b) Bias of DMS Model Flux (DMF) for HadGEM2-ES, 

MPI-ESM-MR and MPI-ESM-LR between 1978 to 2008



Figure 5: Global and regional trends of sea-air DMS flux (µmol m-2 day-1) in CMIP5 models from 1850 to 

2100. HadGEM2-ES outputs started in 1860. There is a transition from historical simulation results to RCP 

8.5 in year 2005.



More work to be done …

To what degree does the bias in DMS flux projection influence the aerosol 

distribution?

Influence of increasing sulfate aerosol in the Arctic on tropospheric

photochemistry

Improve measurements and field experiments is necessary to obtain more 

benchmarking datasets

Answers to questions on size distribution, chemical composition, and 

hygroscopic properties of aerosol in the marine boundary layer (MBL) will 

undoubtedly be instrumental in future climate change policy



Summary

Most CMIP5 models do not have a dynamic representation of dimethylsulfide

Models tend to over-predict DMS surface concentrations in the productive 

region of eastern tropical Pacific by almost a factor of two and the sea-air fluxes 

by a factor of three

Using IOMB, our estimate of natural sulfur emission is close to value obtained 

in Lana et al. 2011



Conclusions

There is need for quality time- and space-resolved estimates of DMS 

concentrations and fluxes

Dynamic representation of surface ocean concentrations and fluxes of marine 

VOCs should be extended to more coupled ocean/mBGC models

A benchmarking tool for marine biogeochemical results, such as IOMB, is 

indispensable as we continue to improve ESM process representations and 

understand the dynamics of climate – carbon cycle feedbacks from the ocean.

This verification and validation system will be employed to analyze outputs 

from ocean models, including those contributing results to the sixth phase of 

Coupled Model Intercomparison Project (CMIP6)



QUESTIONS?


