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SPATIAL PREDICTION APPROACHES OF SOC STOCKS
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Terrain attributes, climatic data, soil reflectance, land use

= Various approaches of differing mathematical complexities are being applied for spatial
prediction of SOC stocks.

[ Regression kriging, which has been reported to produce highest prediction accuracy, is a
hybrid approach which combines correlation between SOC and environmental controllers with
spatial autocorrelation between soil observations.

" Recently, number of studies using ML has increased.

(Updated from Mishra & Lal, 2011)




COMPARING REGRESSION KRIGING WITH MACHINE LEARNING
APPROACHES

= WWe compared four machine learning approaches
(gradient boosting machine [GBM], multinarrative
adaptive regression spline [MARS], random forest
(RF), and support vector machine [SVM]) with
regression kriging to predict the spatial
heterogeneity of surface (0-30 cm) SOC stocks.

= We used 2374 surface soil samples and a variety
of environmental covariates to predict the spatial
heterogeneity of SOC stocks at 250-m spatial
resolution across the northern circumpolar e Vaiidation samples
permafrost region. ®  Calibration samples
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VARIABLE IMPORTANCE IN DIFFERENT SPATIAL PREDICTION

APPROACHES

SVM = support vector machine, MARS = multinarrative adaptive regre
GBM = Gradient Boosting Machine, RF = random forest

ssion spline,
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ENSEMBLE MACHINE LEARNING APPROACH BETTER
PREDICTS SOIL ORGANIC CARBON STOCKS
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PREDICTION ACCURACY OF DIFFERENT SPATIAL PREDICTION

APPROACHES (N = 714 SITES)

= Regression kriging approach
produced lower prediction errors in
comparison to MARS and SVM, and
comparable prediction accuracy
with GBM and RF techniques.

» The ensemble median prediction of
SOC stocks obtained from all four
machine learning techniques
showed highest prediction accuracy.

Prediction
approaches Validation Indices
r RMSE MEE SDE RPD
(kgm?) (kgm?) (kgm=?)
Gradient boosting
machine 0.57 8 0.3 5 1.2
Multivariate adaptive
regression spline 0.38 9 0.2 4 1.1
Random
forest 0.60 8 0.1 5.6 1.2
Support vector
machine 0.50 8.6 2 4.4 11
Multiple linear
regression 0.31 9.5 2.64 4 1.0
Regression
Kriging 0.58 8 0.65 6.6 1.2
Ensemble machine
learning 0.63 7.5 0.4 4.2 1.8
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KEY FINDINGS OF COMPARING REGRESSION KRIGING WITH
MACHINE LEARNING APPROACHES

= Different prediction techniques inferred different importance and used different
number of environmental predictors for SOC stocks.

» Regression kriging approach produced lower prediction errors in comparison to
MARS and SVM, and comparable prediction accuracy with GBM and RF
techniques.

» The ensemble median prediction of SOC stocks obtained from all four machine
learning techniques showed highest prediction accuracy.
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PREDICTING DECADAL SOC CHANGE:
COMPARISON OF MACHINE LEARNING MODELS
WITH CMIP6 MODEL PROJECTIONS
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PREDICTING DECADAL SOC CHANGE: COMPARISON OF MACHINE
LEARNING MODELS WITH CMIP6 MODEL PROJECTIONS

= Recent results are suggesting
ensemble mean predictions of ML + o Calbvatondaissss @ Valdaton Dtaset
techniques are providing more realistic
results for both baseline and SOC
change predictions.

= We compared ensemble ML
predictions (RF, GBM, and XGB) of
baseline and decadal SOC change
with results of recently available _ SR AR
CMIP6 ESM projections. ] T T
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= 100 m spatial resolution for SSP2 4.5

w m=2 and SSP5 8.5 w m2 scenarios.
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IMPORTANT ENVIRONMENTAL CONTROLLERS OF
CONTINENTAL US SURFACE SOIL ORGANIC CARBON STOCKS

= Qut of 32 environmental factors we
evaluated different ML approaches
used 25 environmental factors.

» Normalized Difference Vegetation
Index, potential evapotranspiration,
drainage condition and annual
precipitation were most important
predictors of surface SOC stocks.

» Other important environmental
controllers of SOC stocks were

temperature, elevation, and soil order.
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BASELINE CONTINENTAL US SURFACE SOC STOCKS: ML
PREDICTIONS IN COMPARISON TO CMIP6 ESMS
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PROJECTED SPATIAL PATTERNS OF SURFACE SOC CHANGE
(PG C) IN CONTINENTAL US BY 2100

Ensemble ML predictions Ensemble ESM predictions
Wus SSP24.5
ESM
Land cover types
SSP2 SSP5 SSP2 SSE5
45wm?2 85wm? 45wm? 85wm?
Forest -0.97 -1.53 2.9x103 -4x104

SSP58.5

L e | 68002 010 | 200 | o0 |

(Pasture + herbaceous) - 0.56 -1.28 8.3x103 8.8x103

Negative sign show SOC loss and positive sign show
SOC sequestration

-ouz 245

ML approaches are showing SOC loss under both scenarios, with higher SOC losses
under higher emissions.

« ESMs are showing mixed results of SOC change.
. Both types of models are consistently showing SOC loss from croplands and wetlands.
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PROJECTED DECADAL SOC CHANGES IN US SURFACE SOILS

ESM Soil organic carbon projection for Continental USA

Soil organic carbon sotck (Pg C)

Multimodel machine learning model projection of Soil organic carbon over Continental USA
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ML approaches are not in agreement with ESMs in predicting decadal and total changes in

continental US surface SOC stocks.

ESM predictions differ in orders of magnitude and show different sign of change.
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KEY FINDINGS OF SOIL ORGANIC CARBON CHANGE STUDY

= Baseline representation of continental US surface SOC stocks in CMIP6 ESMs
are not consistent with observations. This disagreement could be due to absence
of important environmental predictors in current ESMs.

» Ensemble ML approach predicts SOC loss under both moderate (2.1 Pg C) and
high emission scenarios (3.9 Pg C). In contrast, ESMs predict both SOC
sequestration and loss over continental US.

= Ensemble ML approach predicts larger changes in SOC stocks in comparison to

ESMs, but both ML and ESMs are consistently predicting SOC loss from
croplands and wetlands.
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DERIVING FUNCTIONAL RELATIONSHIPS OF
ENVIRONMENTAL CONTROLLERS OF SOC
STOCKS
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FUNCTIONAL RELATIONSHIPS BETWEEN ENVIRONMENTAL
PREDICTORS AND SOIL ORGANIC CARBON STOCKS

= We need better model benchmarks
which could reduce the disagreement
between SOC observations and their
model representations.

= We used ~6300 recently available
SOC stock observations and 32
environmental covariates representing
different soil-forming factors.

= We combined Random Forest with
generalized additive models to
develop functional relationships of
important environmental controllers.
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IMPORTANT ENVIRONMENTAL CONTROLLERS OF
CONTINENTAL US SURFACE SOIL ORGANIC CARBON STOCKS
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= First, we used all 32 environmental factors in random forest to predict SOC stocks.

= We removed correlated variables (r=0.7) and identified 22 environmental factors.
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RANDOM FOREST: NUMBER OF VARIABLES VS PREDICTION

ACCURACY
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= With additional number of variables prediction accuracy increased, but after 12
variables improvement in prediction accuracy was minimal.
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GENERALIZED ADDITIVE MODELS

Find polynomial functions to fit the target variable

N
E[Y] = zfi(xi) + C f.(x) is usually a spline
i=1

Only 12 variables identified by the random forest
are used.

* We kept 11 variables at median value and then changed a test variable from
minimum to maximum, and plotted test variable vs SOC stock.

« Fitted a non-linear function that captured the response surface.
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RESPONSE SURFACES OF 12 ENVIRONMENTAL FACTORS
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PREDICTION ACCURACY USING FUNCTIONAL RELATIONS OF 6
ENVIRONMENTAL PREDICTORS IN COMPARISON TO RANDOM
FOREST
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KEY FINDINGS FROM DEVELOPING FUNCTIONAL
RELATIONSHIPS BETWEEN ENVIRONMENTAL FACTORS AND
SOC STOCKS

= Using random forest we can identify important environmental predictors of SOC
stocks.

» Response surface of environmental factors on SOC stocks can be derived using
generalized additive models.

= Derived non-linear response surfaces produced similar prediction accuracy as of
the random forest in predicting surface SOC stocks of continental USA.
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SUMMARY

% THE ENSEMBLE MEDIAN PREDICTION PROVIDES GREATER SPATIAL DETAILS AND
PRODUCES HIGHER PREDICTION ACCURACY, AND THUS CAN BE A BETTER CHOICE FOR
PREDICTING SPATIAL HETEROGENEITY OF SOIL PROPERTIES.

% ENSEMBLE MACHINE LEARNING APPROACH PREDICTS MORE REALISTIC DECADAL
CHANGES IN SOIL ORGANIC CARBON STOCKS OF CONTINENTAL US IN COMPARISON TO 4
CMIP6 ESMS.

% BY COMBINING MACHINE LEARNING WITH GENERALIZED ADDITIVE MODELING FUNCTIONAL
RELATIONSHIPS BETWEEN ENVIRONMENTAL FACTORS AND SOC STOCKS CAN BE
DEVELOPED, WHICH MAY SERVE AS POTENTIAL LAND MODEL BENCHMARKS.
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LARGE DATASETS FOR GLOBAL STUDIES

We have acquired ~114,000 soil profile data and 30 environmental covariates from various
sources, and plan to conduct SOC storage and dynamics studies at global scale.
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