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VPD and CO, are rising
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Some big questions

What are the...
* plant-scale responses to rising VPD? And to rising CO,?

* landscape-scale responses to rising VPD (including disturbances)? And,
landscape-scale responses to rising CO,?

* global climate impacts of rising VPD? And, of rising CO,?
* net global climatic impacts of rising VPD and CO,?

Alaska, USA




Our ultimate goals
1) to disentangle the antagonistic effects of rising VPD and CO, on plants and

subsequently on global climate
2) to improve model representation as necessary for predictive accuracy
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VPD and CO, impacts on plant physiology

Amazon forest, Manaus Brazil



Rubisco and stomata cover the Earth

West Kalimantan, Indonesia. Nanang Sujana/CIFOR
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What is the role of rising VPD and CO,?
A physiological conflict
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VPD and stomata

1) VPD is the evaporative demand for water from ecosystem surfaces.
2) VPD is an exponential function of temperature.
3) VPD strongly controls stomatal conductance and hence photosynthesis.
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VPD closes stomata at the ecosystem scale
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Rising CO, impacts on water and carbon fluxes
1) higher photosynthesis

2) reduced stomatal conductance? B I
2) higher leaf area R r——
3) net impacts on transpiration? 1 o
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Experiments show reduced stomatal conductance (but only in
crops/grasses) and greater leaf area with elevated CO,
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CO, has no impact on water use due to
leaf area-conductance trade-off.
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Temperature overwhelms CO, in driving
total water use.
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Increasing global leaf area
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Global evapotranspiration increases with leaf area
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VPD anomaly (kPa)
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Are we shifting from a CO, to a VPD dominated world?
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More complexity: VPD-driven disturbances
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Dead pine forest, Santa Fe New Mexico. C. Allen



Rising VPD promotes large-scale disturbances with
feedbacks on climate
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Wildfire’s are growing due largely to rising VPD and human met.
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Insect outbreaks are promoted by increasing temperature via insect
maturation rates, and VPD through increased tree vulnerability.

Surviving tree Dying tree

N e  Defense
] 250 500 1000 Kilometers

Aerial detection of insect attacks, USA

Hicke et al. 2011



Rising VPD promotes rising tree death
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Rising VPD promotes rising tree death
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VPD overwhelms CO, water savings?
Decreasing soil moisture, e.g. ‘soil drought’, is likely
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Drivers: CO,, temperature, VPD

What are the impacts of these VPD-driven disturbances on
surface energy, carbon, and water budgets?

Disturbance causes:

. . o Climate

* Dynamic changes in transpiring leaf area o change
* Large decline in root water uptake 8

. Composition Disturbance
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What are the net impacts of rising VPD and
rising CO, on climate?
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The Amazon forest, Manaus, Brazil



Predictions suggest transpiration is decreasing due to rising CO,

* Physiological effects of reduced transpiration
* increase global warming (Sellers et al. 1996 Science; Cao et al. 2010)
* increase streamflow (Cao et al. 2010)
* increase runoff (Lemordant et al. 2018)
 increase flooding (Fowler et al. 2019)
* reduce drought stress (Swann et al. 2016)

e Reduced transpiration influences
* zonally asymmetric changes in tropical rainfall (Kooperman et al. 2018)
* modulate global land monsoon and water resources (Cui et al. 2020).

* Substantial regional variation in CO,-driven vegetation responses and feedbacks
* increased LAl and transpiration (McDermid et al. 2021)
* reduced stomatal conductance and transpiration (McDermid et al. 2021)



Models suggest physiology has a significant impact on the
global hydrologic cycle

Drivers of 100-yr floods under elevated CO,:
physiological effects dominate in the tropics

Physiological effects
(green fractions of the
circle plots) have a
dominant role on A)
transpiration, B)
precipitation-
transpiration, C)
evaporative fraction,
and D) soil moisture.

Multiply stressed PHYS RAD
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Models suggest significant impacts on climate and on vegetation
drought stress

Physiological response reduces drought stress as
reflected in changesinP - E

Physiological response dominates the increased

zonally asymmetrlc ralnfaII change in tropical land
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Radiative and physiological effects on tropical precipitation
in E3SM: changes in diurnal and seasonal cycles
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A robust damping of diurnal amplitude of rainfall: (1) radiative damping comes from
storage changes and (2) physiological damping comes from local evaporation changes
(except over Maritime Continent)
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Mechanistic representation of plant hydraulics within models.
Could this effect the outcomes?

a) Hydrodynamic model
Vegetation optical depth WIthm FATES
I
1 \ Embolism vulnerability curves I
’ SOIL SURFACE
i ‘ . ‘ :
el
Root water uptake > e, .:
>3 —>
I J
T T
PLANT RHIZOSPHERE
McDowell, Brodribb, Nardini 2019

Christoffersen, Xu, et al in prep

e.g. replace the non-mechanistic water stress term (beta) with real hydraulics



VPD vs CO, impacts on drought-induced hydraulic failure and
subsequent mortality using hydraulically mechanistic models

Modeled hydraulic failure (PLC,
percentage loss of conductance)
for mature spruce trees in

100 eVPD
Switzerland —eCO2 eVPD
— ambient
Ensemble means of five models: — eCO2

Sureau, Sperry, TREES, MedFates,
CABLE. Gray shading is standard
error.

Mortality may not be more likely
under future VPD due to water
savings benefits of rising CO,

Day of the year

Photo M. Arend McDowell et al. in review



Future challenges

Key fluxes and processes that require more mechanistic understanding

under rising VPD and CO,

* Leaf to plant:
e carbon and water fluxes
* plant production
* plant mortality

* Ecosystem to globe:
e Dynamic PFT changes; LAI, disturbances

* Feedbacks on
* surface energy
e carbon budgets
e water budgets

Dead spruce from drought and insect attack, Germany



Future solutions

* Determining individual and net impacts of CO, and VPD empirically

* Model development is currently advanced beyond measurements
e Empirical and numerical manipulative experiments
* Observations: ground, atmosphere, remote sensing

* Improving models with advanced hydraulics
* More realistic transpiration simulations
* Development
* Benchmarking

* Representing dynamic changes in vegetation PFTs, LAI, disturbances

* Reconciling data and observations with simulations
* Model-experiment and model-observation integration is essential



Conclusions

* The net impact of rising VPD and CO, upon plant carbon and water
fluxes, growth, and mortality is unknown.

* VPD and CO, have conflicting impacts on plant fluxes of carbon and
water
* Changing decreased stomatal conductance, leaf area, etc.

e VPD-driven disturbances add additional uncertainty

* To reduce predictive uncertainty of global land-surface and climate
models, we may need to capture these antagonistic processes at the
scales of stomata to Earth system feedbacks.
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