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Fire in the Earth System

and floods that control fuel availability63. Moreover, 
early satellite observations are spatially coarse and have 
imperfect coverage64, with reliable coverage only avail-
able since the turn of this century. More uncertainty in 
global trends arises because of the substantial variation 
in fire activity amongst biomes, which demands regional 
rather than global analyses. As fire disasters are often 
associated with much smaller burned areas than fires 
in remote areas, metrics other than burned area need to 
be incorporated into analyses23,65. Particularly important 
are estimates of fire intensity, which provides a measure 
of the energy released from the fires, and fire severity, 
which is an estimate of the environmental impacts of  
the fires, such as degree of canopy damage66. Despite 
these observational limitations, there is an emerging 
picture of changes in global fire activity, which empha-
sizes the importance of regional- scale variation, climate 
change and anthropogenic drivers.

From 1979 to 2013, an average increase of 18.7% 
in fire- weather- season length has been documented 
across global burnable lands, with a doubling by long 
fire- weather seasons across most of the Earth’s flammable 
biomes67 (FIG. 3). Extreme fire- weather conditions, along-
side drought and fuel dryness, are associated with extreme 
fire events23. However, the MODIS burned area record68  
indicates that, between 1998 and 2015, the area burned 
by vegetation fires globally declined by around 25%, 
from over 500 Mha to less than 400 Mha annually69. The 
largest decreases in area burned occurred in African 
and South American tropical savannahs and Asian 
semi- arid grasslands (FIG. 3a,b), and were caused by ongo-
ing land- cover conversion, leading to a more fragmented 
and less flammable landscape69. A decline greater than 
the global average of area burned was also detected in 
western Australian desert, a change known to be asso-
ciated with interannual drought cycles and the absence 
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Fig. 1 | Vegetation fire in the Earth system. Landscape perspective of the multiple factors that influence, interact with 
and are impacted by vegetation fire. Fires have numerous direct and indirect affects that impact the biosphere (including 
vegetation cover), geosphere (including soil erosion), hydrosphere (including fluvial sediment and nutrient transport), 
cryosphere (including soot fallout and changed albedo) and atmosphere (including smoke pollution). PyroCb, 
pyrocumulonimbus.

Extreme vegetation- fire 
events
Extreme fire events are 
characterized by some 
combination of the following: 
anomalous fire behaviour, 
involving extremely high 
energy releases, very rapid rate 
of spread, very large flame 
heights; massive emission of 
smoke and greenhouse gas 
pollution; prolonged duration 
of fires, enormous geographical 
scale of burned areas, or both; 
fires causing unusually adverse 
biological, atmospheric or 
geomorphological effects.
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Historical and Projected Wildfire Activities in CMIP6 ESMs
GFED Observation (2007-2016) CMIP6 Ensemble Mean
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Ways to Reduce ESM Projection Biases

Core concept of Emergent constraint: despite major differences across ESMs, relationships between 
elements of current climate (X) and future climate (Y) are implicit within ESM solutions of the partial 
differential equations governing physical and biogeochemical systems, i.e., Y = f(X) + ε, where f is 
identified from a suite of ESMs. Hall et al. (2019)



55

Limited Applicability of Traditional Emergent Constraint
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Supplementary Fig. 2: Limited applicability of traditional emergent constraint (EC) in the 
projection of fire carbon emission with CMIP6 models. a. Scatterplot of global total future fire carbon 

emission (Tg yr
-1

) during the 2010s, 2020s, …, and 2090s versus historical fire carbon emission (Tg yr
-1

) 

during the 2000s among 13 CMIP6 ESMs and their ensemble members. The squared correlation 

coefficient (R2) between future and historical fire carbon emission for each future decade is indicated in 

the legend. These R2s are all significant at the p < 0.05 level (n = 38). b. Level of significance of the 

cross-model correlation between the historical and future fire carbon emission at each grid cell. c. Level 

of significance of the cross-model correlation between the optimized linear combination of multiple 

historical constraining variables and future fire carbon emission at each grid cell. The constraining 

variables in c include historical fire carbon emission, leaf area index, soil moisture, temperature, 

precipitation, relative humidity, and wind speed. In b and c, the correlation is first obtained for each 

future decade and then averaged across different future decades. The significance of the multidecade 

average correlation is evaluated using the two-tail Student’s t-test. Coastal areas mostly show significant 

correlation between future fire carbon emission and constraining variables because of minimal wildfire 

activity from these regions in both historical and future simulations. 
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Wildfire Machine Learnings

Jain et al. (2020)
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Predictability of African Fire Carbon Emission

Credit: NASA Yu and Mao et al. (2020)Credit: NASA
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Schematic of the ML-EC Framework

 8 

 
Supplementary Fig. 3: Schematic of the current analytical framework. 
 
  

Training dataset: the spatial sample (at 0.25˚ lat/lon) of decadal 
mean predictors and target variable (N = 11,325 for each ESM). 
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Validation of the Analytical Framework

Use fire-relevant variables during 1997-2006 to predict fire carbon emissions during 2007-2016.

: Original 
Boxplot: ML 
constrained



1010

Fire Carbon Emissions Based on SSP5-85

6.0% (0.6%–9.4%) 
decade-1

4.1% (2.6% –
7.2%) decade-1
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Fire Carbon Emissions Based on SSP5-85

Trend in fire carbon emission 
(kg m-2 yr-1 dec-1)

Fire carbon emission during 
2090s (kg m-2 yr-1)
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Fire Carbon Emissions Based on SSP5-85

ML constrained 
Original

Trend in fire carbon emission (%dec-1)
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Fire Carbon Emissions Based on SSP5-85
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Socioeconomical Exposure to Wildfire Changes

Decadal mean population (GDP, agricultural area) exposure = population (GDP, agricultural 
area) x fire carbon emission. Sum over all pixels in a country and then calculate trend.

5.5% (5.0%–6.2%) decade-1
3.2% (1.1%–7.9%) decade-1 12.6% (7.0%–28.5%) decade-1

40.6% (33.7%–48.5%) decade-1 2.5% (1.9%–3.7%) decade-1
1.8% (0.9%–5.5%) decade-1
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Most Vulnerable Countries to Future Wildfire Changes 
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Supplementary Table 3 Top 10 countries projected to experience greatest relative changes in 
socioeconomic risks caused by wildfires in the twenty-first century, according to the default and 
observation-constrained multimodel ensemble. The relative trend (Rel. trend) is calculated as the ratio of 
the projected trend and the corresponding socioeconomic risk during the 2010s. African countries are 
represented by orange shading, Asian countries by yellow shading, and European countries by blue 
shading. 
 

# Population risk (103 kg m-2 y-1 

person) 
Gross domestic product risk (kg m-2 
y-1 billion USD) 

Agricultural risk (kg m-2 y-1 km2) 

Country Trend 
(dec-1) 

Rel. trend 
(% dec-1) 

Country  Trend 
(dec-1) 

Rel. trend 
(% dec-1) 

Country Trend 
(dec-1) 

Rel. trend 
(% dec-1) 

Original ensemble 
1 Bahrain 1.0 260 Djibouti 0.265 3,932 Yemen 18.3 97 
2 Djibouti 4.8 200 Niger 0.781 2,111 Namibia 313.6 75 
3 Yemen 34.3 110 Qatar 0.293 2,102 Norway 24.2 71 
4 United Arab 

Emirates 11.9 90 Eritrea 0.270 1,644 Botswana 489.3 70 
5 Niger 35.6 85 Somalia 0.156 1,629 Chad 529.9 67 
6 Kuwait 2.2 70 Yemen 0.630 1,029 Sweden 210.4 59 
7 Eritrea 20.1 70 Sudan 1.678 755 Sudan 1,753.9 57 
8 Oman 3.9 60 Malawi 2.142 641 Switzerland 12.8 55 
9 Luxemburg 3.4 66 Zambia 8.058 637 Eritrea 33.2 51 
10 Ireland 5.3 60 Tajikistan 0.831 597 Oman 1.2 51 

Observation-constrained ensemble 
1 Niger 58.7 141 Niger 0.778 2,102 Liberia 180.5 192 
2 

Uganda 402.1 108 
Sierra 
Leone 1.065 2,070 

Sierra 
Leone 284.6 171 

3 Ireland 7.1 84 Uganda 5.695 2,009 Ireland 11.6 95 
4 Nigeria 1,410.5 78 Malawi 4.173 1,249 Guinea 718.1 81 
5 Yemen 22.0 72 Benin 2.391 1,233 Senegal 246.9 76 
6 

Sierra 
Leone 78.1 66 

Democratic 
Republic of 
the Congo 13.028 1,227 Chad 586.8 74 

7 Pakistan 348.0 56 Nigeria 36.966 1,112 Congo 110.8 74 
8 Malawi 236.5 52 Yemen 0.641 1,046 Yemen 13.7 73 
9 Benin 99.2 53 Guinea 2.504 991 Sudan 1,953.3 63 
10 Democratic 

Republic of 
Congo 1,326.9 46 Burundi 0.487 789 

The 
Gambia 21.4 58 
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Importance of Historical Predictors for Future Fire

 14 

 

 
Supplementary Fig. 9: Importance of historical predictors for fire carbon emissions at different 
future time windows. The importance of predictors is a standard output of all machine leaning 
techniques (MLT). Although the calculation of importance scores varies substantially by MLT, all the 
importance scores qualitatively reflect relative importance of each predictor. The average importance 
scores from these MLT are reported here for robustness. For the atmospheric and terrestrial variables that 
include annual mean and monthly climatology as predictors, to account for the overall importance of a 
particular variable while considering the possible information overlapping contained in each month and 
annual mean, the importance of each variable is represented by the highest importance score among these 
13 predictors (annual mean, January, February, …, December).  
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Importance of Factors’ Trend to Future Fire

 15 

 
Supplementary Fig. 10: Dynamical importance of the trend in each environmental and 
socioeconomic driver to the spatial pattern of trend in fire carbon emissions during the twenty-first 
century for the tropical regions. Analyzed regions include a. Amazon (20°S–10°N, 80°W–40°W) and 
b. Congo (10°S–12°N, 20°W–30°E). The absolute value of the dynamical importance is qualitatively 
determined as the relative weight of each driver in the machine learning models for predicting the spatial 
distribution of the trend in fire carbon emissions (% decade-1) during the twenty-first century (see 
Methods). The sign of the dynamical importance of each driver is assigned to the sign of spatial 
correlation between the projected trends in fire carbon emissions and corresponding driver. This analysis 
is performed for both the original (gray bars reflecting multimodel average, and individual dots 
representing each model) and constrained (red bars) ensembles. 
  

o In ML constrained, apply the current observational constraining framework to all fire-relevant variables;
o Obtain trends in all these fire-relevant variables;
o Assess the relative importance of these variables in regulating the spatial distribution of future fire 

carbon emissions for different regions;

ML constrained 
Original
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Scenario-dependent ProjectionsProjection depends on scenario
SSP5-85 SSP2-45

35

ML constrained ML constrained 

ML constrained 
Original ML constrained 

Original

SSP5-85 SSP2-45
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Historical Observations

30-m resolution500-m resolution Fine – coarse 

Burned area fraction in 2016 from satellite products with different spatial resolution (Ramo et al., 2021).
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Models and Feedbacks 

o Insufficient representation of these processes in ESMs
o Offline projection in current ML constraining framework

CMIP6 Model Resolutio
n (km)

Ensemble 
members

Land 
model Fire model description

CESM2 100 3
CLM5

Natural and anthropogenic 
ignition sources and 

suppression of agricultural, 
deforestation, and peat 

fires2,3

CESM2-WACCM 100 5

CMCC-ESM2 100 1 CLM4.5

CNRM-ESM2.1 250 5 SURFEXv8.
0 (ISBA) Interactive natural fires5

E3SM-1.1 100 1 ELM v1.1 Same as CLM5
EC-Earth3-CC 100 1

LPJ-GUESS 
v4 Interactive natural fires7EC-Earth3-Veg-

LR 250 3

EC-Earth3-Veg 100 5

GFDL-ESM4 100 1 LM4.1

Distinct parameterizations for 
natural and agricultural 

wildfires, especially 
representing multiday and 

crown wildfires9

MPI-ESM1-2-LR 250 10 JSBACH3.
20

Natural fires ignited by 
human activity and lightning, 
with up to 12-hour duration10

MRI-ESM2 100 1 HAL 1.0 N/A
NorESM2-LM 250 1

CLM5 Same as CLM5NorESM2-MM 100 1

ESMs Analyzed in This Research

Bowman et al., 2020
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Take-home Messages

🔥 Credibility of future wildfire simulations by latest ESMs remains low 
because of modeling uncertainties and insufficient application 
of observational constraints for ESMs;

🔥 New ML-based EC framework is particularly useful for prediction 
and projection of variables with complex driving factors, such as 
wildfire regimes and extreme climates;

🔥 Constrained results showed further enhancement of wildfire 
activities in the historically fire-prone regions;

🔥 Concurrently enhanced wildfire activity and socioeconomic 
development call for mitigation and/or adaptation strategies to 
minimize potential socioeconomic loss caused by wildfires;
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