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Abstract: Using a recent Leaf Area Index (LAI) dataset and the Community Land Model 
version 4 (CLM4), we investigated percent changes and controlling factors of global 
vegetation growth for the period 1982 to 2009. Over that 28-year period, both the  
remote-sensing estimate and model simulation show a significant increasing trend in 
annual vegetation growth. Latitudinal asymmetry appeared in both products, with small 
increases in the Southern Hemisphere (SH) and larger increases at high latitudes in the 
Northern Hemisphere (NH). The south-to-north asymmetric land surface warming was 
assessed to be the principal driver of this latitudinal asymmetry of LAI trend. 
Heterogeneous precipitation functioned to decrease this latitudinal LAI gradient, and 
considerably regulated the local LAI change. A series of factorial experiments were 
specially-designed to isolate and quantify contributions to LAI trend from different 
external forcings such as climate variation, CO2, nitrogen deposition and land use and land 
cover change. The climate-only simulation confirms that climate change, particularly the 
asymmetry of land temperature variation, can explain the latitudinal pattern of LAI change. 
CO2 fertilization during the last three decades was simulated to be the dominant cause for 
the enhanced vegetation growth. Our study, though limited by observational and modeling 
uncertainties, adds further insight into vegetation growth trends and environmental 
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ª The global enhancement of plant growth was 
detected and simulated particularly over the northern 
mid-high latitudes (Myneni et al., 1997; Zhou et al., 
2001; Buitenwerf et al., 2015); 

ª Natural environmental factors regulate vegetation 
growth and its variability, and human activities directly 
or indirectly alter their variations (Lucht et al., 2002; 
Piao et al. 2014; Zhu et al., 2016);  

ª Discriminating these anthropogenic perturbations from 
natural factors is expected to increase in importance as 
anthropogenic transformation of the Earth system 
becomes more pervasive;  

Background 



ª Study the spatial and temporal changes of global vegetation 
growth for the past 3 decades; 

ª Characterize the response of vegetation activity to the 
inhomogeneous land warming; 

ª Evaluate the representation of the response relationship in land 
surface models; 

ª Examine the natural and anthropogenic controls on vegetation 
changes; 

Objective 

ª We used the latest Leaf Area Index (LAI) dataset, the LAI3g;  

ª We used this satellite LAI to evaluate single-factor and multi-
factor simulations from the CLM4; 

Approach 



Experimental design. “T” denotes transient 
variation for the related forcing during the study 
period. “C” denotes the forcing is kept on the first 
year value. 	
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Figure 1. Latitudinal gradient of percentage change (%/28 yr) in GIMMS-LAI3g, 
LAI_CLM4, temperature and precipitation for 1982–2009. The gray histogram indicates 
the latitudinal sum of land area (× 106 km2). Dashed lines indicate the linear fit to the 
latitude bands at every-5 degree. 

  

Table 1. Latitudinal trend (TREND_LAT) and spatially averaged annual trend 
(TREND_AVE) of LAI from Boston University (GIMMS-LAI3g), CLM4 LAI of 
simulation “ALL” (LAI_CLM4), CLM4 LAI of simulation “CLI” (LAI_CLI), CLM4 LAI 
of simulation “CO2” (LAI_CO2), CLM4 LAI of simulation “NDE” (LAI_NDE), CLM4 
LAI of simulation “LUC” (LAI_LUC), annual temperature (TEMP) and annual 
precipitation (PREC) for the globe during the study period. Bold values represent trends 
with significance (P < 0.05). The unit for TREND_LAT is %/°N and for TREND_AVE is 
%/28 yrs.  

Variables TREND_LAT TREND_AVE 
GIMMS-LAI3g 0.09011 6.92824 

LAI_CLM4 0.08204 8.48696 
LAI_CLI 0.07449 2.78304 
LAI_CO2 −0.0016 3.71356 
LAI_NDE 0.00532 0.89213 
LAI_LUC −0.00128 0.71303 

TEMP 0.00281 0.2606702 
PREC −0.01059 5.315374 

The latitudinal changes in precipitation are quite variable along different latitude bands and show a 
slight decreasing trend from the SH to NH at −0.01%/°N. Compared with the satellite data, simulated 
latitudinal LAI trends are more significantly and positively correlated with this precipitation pattern 
(Table 2). Globally, the temperature trend is observed to increase over all the study latitudes (Figure 1). 
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natural variation in climate ruled the vegetation growth over broadleaf evergreen tropical tree and 
broadleaf deciduous boreal shrub. In contrast, the CO2 fertilization controlled the LAI trends for other 
PFT types, the globe and each hemisphere. 

Figure 3. (a) Latitudinal gradient of percentage change (%/28 yrs) in GIMMS-LAI3g, 
LAI_CLM4, LAI_CLI, LAI_CO2, LAI_NDE, and LAI_LUC from 1982 to 2009. The gray 
histogram indicates the latitudinal sum of land area × 106 km2). Dashed lines indicate the 
linear fit to the latitude bands at every-5 degree; (b) LAI percentage trend (%/28 yrs) from 
satellite LAI and CLM4 simulations over main CLM4 plant functional types (PFTs), the 
globe (Global), northern hemisphere (NH), and southern hemisphere (SH). Abbreviations 
for PFTs are needleleaf evergreen boreal tree (NEBor Tree), broadleaf evergreen tropical 
tree (BETro Tree), broadleaf deciduous tropical tree (BDTro Tree), broadleaf deciduous 
boreal shrub (BDBor Shrub), C3 nonarctic grass (C3NA Grass), C4 grass, and corn. The 
yellow square denotes global and each hemisphere numbers. 

 

Figure 4 depicts the spatial variation of time trends in CLM4-predicted LAI (%/28 yrs) as affected 
by individual causative factors for the period from 1982 to 2009. LAI trends for the simulation forced 
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Figure 4. Cont. 

 

4. Concluding Remarks  

In this study, we estimated satellite-derived and model-simulated relative change in global annual 
LAI from the years 1982 to 2009. The response of LAI trends to relative changes in primary climatic 
forcings like temperature and precipitation, changing CO2 concentration, nitrogen deposition, and 
LULCC were also systematically quantified. Both the remote-sensing product and CLM4 offline 
simulations demonstrate significant increasing trends of annual vegetation growth during the last three 
decades, in support of previous observations, hypotheses and modeling [19,21–25]. We find that the 
latitudinal distribution of LAI trends show a pattern of south-to-north asymmetry in the satellite 
product, as do the CLM4 “ALL” and “CLI” simulations, i.e., those forced by transient climate change. 
This unique feature was diagnosed to be tightly associated with the latitudinal asymmetry of the land 
surface temperature trend [29]. Precipitation patterns decrease this asymmetric-latitudinal LAI trend, 
with strong local effects. Latitudinal trend in modeled LAI is more responsive to precipitation variation 
than to temperature variation, while the opposite is true for the remotely sensed LAI, suggesting that 
CLM4 may overestimate the response of vegetation dynamics to spatial variations in precipitation, and 
underestimate response to spatial temperature variation [20]. Our factorial experiments indicate that, 
CO2 fertilization was more important than climate variation in determining the magnitude of the 
temporal trend in LAI at the global scale, in each hemisphere, and for most of the modeled plant 
functional types over our study period, in agreement with a previous study using an independently 
developed model [23]. This infers the significance of accurate prediction of responses of terrestrial 
ecosystem function and structure to CO2 fertilization with respect to future climate change. The LAI 
increase primarily controlled by “LUC” was simulated for tropical Asia and the Indonesian Islands in 
particular (Figure 4(d,e)). [36] confirms that transitions in the tropics are dominated by shifts in 

 (e) 
!

Simulated	dominant	driving	factors	for	LAI	trends	
between	1982	and	2009	



ª Over the 28-year period, both the remote-sensing estimate and CLM4 
simulation show a significant increasing trend in annual vegetation 
growth; 

ª Latitudinal asymmetry appeared in both products, with small 
increases in the Southern Hemisphere and larger increases at high 
latitudes in the Northern Hemisphere; 

ª The south-to-north asymmetric land surface warming was assessed to 
be the principal driver of this latitudinal asymmetry of LAI trend; 

ª Heterogeneous precipitation decreased this latitudinal LAI gradient, 
and considerably regulated the local LAI change;  

ª CO2 fertilization during the last three decades was estimated to be the 
dominant cause for enhancement in global mean vegetation growth; 

ª Human induced land use/land cover change and nitrogen deposition 
produced slightly increasing global LAI and the regionally dependent 
impacts. 

 

Summary and significance 



ª Simulated CLM4 LAI compares well with an independent 
satellite-based estimate in terms of annual trends and 
correlations with climate;  

ª Model-data analysis provides process attribution information 
not available from the observations alone;  

ª These validation exercises provide new global-scale metrics 
for evaluation of model outputs and help prioritize improvements 
in model performance across different scales.  

 

Summary and significance 



ObjecYve	
• Three	long-term	satellite	leaf	area	index	(LAI)	records	and	ten	global	ecosystem	models	
were	used	to	understand	how	dynamics	of	terrestrial	vegeta>on	are	responding	to	
global	environmental	change	for	the	period	1982-2009.		

New	Science	
• We	iden>fied	a	persistent	and	widespread	increase	of	growing	season	integrated	LAI	
(GSILAI)	or	greening)	over	25	to	50%	of	the	global	vegetated	area,	whereas	less	than	
4%	of	the	globe	shows	decreasing	GSILAI	(browning)	[Fig.	A].		

• Model-based	interpreta>ons	of	these	data	demonstrated	significant	correla>on	to	CO2	
fer>liza>on	(70%),	nitrogen	deposi>on	(9%),	climate	change	(8%)	and	land	cover	
change	(LCC;	4%)	[Figs.	B	and	C].		

• CO2	fer>liza>on	effects	dominated	in	the	tropics,	whereas	climate	change	was	the	
dominant	driver	in	the	Tibetan	Plateau.	LCC	contributed	most	to	regional	greening	in	
southeast	China	and	the	eastern	United	States	[Fig.	C].	

Significance	
• We	clarified	mechanisms	driving	vegeta>on	dynamics	for	the	past	3	decades.		
• We	demonstrated	significant	anthropogenic	influences	on	the	produc>ve	capacity	of	
terrestrial	vegeta>on.		

• We	propose	new	areas	for	future	terrestrial	ecosystem	model	improvements.		

Greening	of	the	Earth	and	its	drivers	

CitaYon:	Zaichun	Zhu,	Shilong	Piao*,	Ranga	B.	Myneni,	Meng>an	Huang,	Zhenzhong	Zeng,	
Josep	G.	Canadell,	Philippe	Ciais,	Stephen	Sitch,	Pierre	Friedlingstein,	Almut	Arneth,	
Chunxiang	Cao,	Lei	Cheng,	Etsushi	Kato,	Charles	Koven,	Yue	Li,	Xu	Lian,	Yongwen	Liu,	
Ronggao	Liu,	Jiafu	Mao,	Yaozhong	Pan,	Shushi	Peng,	Josep	Peñuelas,	Benjamin	Poulter,	
Thomas	A.	M.	Pugh,	Benjamin	D.	Stocker,	Nicolas	Viovy,	Xuhui	Wang,	Yingping	Wang,	
Zhiqiang	Xiao,	Hui	Yang,	Sönke	Zaehle	and	Ning	Zeng,	2016.	Greening	of	the	Earth	and	its	
drivers.	Nature	Climate	Change,	doi:	10.1038/NCLIMATE3004.		
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the LAI trend at the global scale. However, this result is uncertain,1

because only two models in the ensemble specifically performed2

factorial simulations with and without nitrogen deposition. A3

slightly negative trend in nitrogen deposition e�ect was observed in4

North America and Europe, where nitrogen deposition rates have5

stabilized, or even declined, during the past three decades24,25.

Q.3

6

LCC is a dominant driver of LAI greening over only 9.6% of7

the global vegetated area, mainly in southeast China and southeast8

United States. Models produce negative LCC e�ects on LAI trends9

in tropical and southern temperate regions where deforestation10

occurred (Supplementary Fig. 11d)26. However, the individual e�ect11

of LCC is apparently outweighed by other factors in these regions,12

and thus does not seem to be dominant. Trends of the LCC e�ect13

simulated by ecosystem models di�er significantly in magnitude,14

and sometimes also in sign. This could be due to di�erences15

in model assumptions relating to whether the productivity of16

secondary vegetation is smaller or larger than that of the vegetation17

it replaces.18

At the global scale, the observed LAI trend can be largely19

accounted for by CO2, climate, nitrogen deposition and LCC.20

However, at regional scales, other factors (OF) not considered in21

models, such as forest management, grazing, changes in cultivation22

practices and varieties, irrigation and disturbances such as storms23

and insect attacks, can be a cause of mismatch between observed24

and simulated LAI trends. The patterns of the e�ect of other factors25

were estimated as a residual, by subtracting the simulated trend26

caused by factors explicitly modelled from the observed local LAI27

trend. OF contributes the most to the observed LAI trend over28

25.0% (increase) and 5.3% (decrease) of the vegetated area (Fig. 3d).29

OF can also encompass non-modelled processes, such as plant30

diversity within a type of vegetation, hydrological and nutrient31

liberation during permafrost thawing, phosphorus and potassium32

limitations, access to ground water by deep roots, and rigid 33

discretization of the simulated vegetation into few plant functional 34

types. Further, uncertainties in existingmodel parameterization and 35

structure (Supplementary Section 7) and biases from the remote 36

sensing data sets (Supplementary Section 6) can cause a mismatch 37

between simulated and observed LAI trends. Interestingly, positive 38

e�ects tentatively attributed to OF are mainly found in areas 39

of intensive ecosystem management, such as northeast China, 40

Europe and India27. Negative OF e�ects are mainly found in 41

northern high latitudes, where most models lack a representation 42

of regionally important ecosystems (peatlands, wetlands) as well as 43

of specific disturbances28,29. 44

Understanding the mechanisms behind LAI trends is a first, yet 45

critical, step towards better understanding the influence of human 46

actions on terrestrial vegetation, and towards improving future 47

projections of vegetation dynamics. Bymaking use of three LAI data 48

sets, an ensemble of ten ecosystem models, and a fingerprinting 49

technique, we assessed the consistency of observed greening and 50

browning patternswith the e�ects of key environmental drivers. The 51

use of a ten-model ensemble increases confidence in the attribution, 52

although model simulations diverge in some aspects, particularly 53

for the impacts of climate change and LCC, which suggests an 54

area for future model improvements. Overall, the described LAI 55

trends represent a significant alteration of the productive capacity 56

of terrestrial vegetation through anthropogenic influences. 57

Methods 58

Methods and any associated references are available in the online 59

version of the paper. 60
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0.051 ± 0.029m2 m�2 yr�1 ). This suggests that, although incorpo-1

rating nitrogen in ecosystem models does not significantly (t-test,2

p<0.05) change the contribution of the CO2 fertilization e�ect to3

the global trend of LAI, it reduces the spread of model simulations4

(F-test, p<0.05).5

Vegetation leaf area changes result from interacting factors, but6

factorial simulations help to attribute a dominant factor for the7

observed changes. Our analyses show that the CO2 fertilization8

e�ect has a rather spatially uniform e�ect on the positive LAI trends.9

The modelled relative increases in global mean LAI due to CO210

fertilization alone is about 4.7–9.5% (or 10.2–20.7% per 100 ppm)11

during 1982 to 2009, which is comparable to measurements from12

the Free-Air CO2 Enrichment (FACE) experiments (0.3–11.1%, or13

0.6–24.1% per 100 ppm)14. However, no FACE experiment covered14

tropical forests, where models suggest that eCO2 is the dominant15

factor of the recent LAI trend (Fig. 3c,d). The spatial pattern is16

consistent with previous analyses15 that posited large absolute LAI17

increases due to eCO2 in the tropics, in the absence of temperature,18

water and nitrogen limitations16, and large relative LAI increases19

due to eCO2 in arid regions, where eCO2 is expected to increase the20

water use e�ciency of plants (Supplementary Fig. 12)17. A simple21

theoretical model17,18 was used to diagnose the response of leaf level22

carbon assimilation to the observed 46 ppm increase of CO2 over the23

study period, including the e�ect of vapour pressure deficit trends24

and stomatal closure. This model gave a similar relative response of25

carbon assimilation to eCO2 as the ecosystem models did for LAI 26

(Supplementary Section 12). 27

Climate change explains about 8.1 ± 20.1% of the observed 28

positive LAI trend but, unlike eCO2 e�ects, climatic e�ects are 29

negative in some regions. Although detected by the optimal 30

fingerprint model, the e�ects of climate change are not consistent 31

between models, and may even be opposite in individual model 32

simulations. Overall, climate change has dominant contributions 33

to the greening trend over 28.4% of the global vegetated area 34

(Fig. 3c,d). Positive e�ects of climate change in the northern 35

high latitudes and the Tibetan Plateau are attributed to rising 36

temperature, which enhances photosynthesis and lengthens the 37

growing season5, whereas the greening of the Sahel and SouthAfrica 38

are primarily driven by increasing precipitation (Supplementary 39

Fig. 13). South America is the only continent where negative climate 40

e�ects were statistically significant (Supplementary Figs 10 and 41

11b). This is particularly important owing to the role of the Amazon 42

forests in the global carbon cycle19,20. Ecosystemmodels may tend to 43

overestimate the responses of vegetation growth to precipitation12
44

(Supplementary Section 10), which is one of the reasons why the 45

fate of the Amazon forests continues to be debated10. 46

Considerable evidence points to nitrogen limitation of vegetation 47

growth over many parts of the Earth21, with local alleviation 48

by nitrogen deposition in boreal and temperate regions22,23. Our 49

analyses suggest that nitrogen deposition explains 8.8 ± 11.8% of 50
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Figure 3 | a,b, Spatial distribution pattern of the trend in growing season integrated LAI for the period 1982–2009. LAI trends were derived from the
average of GIMMS, GLOBMAP and GLASS LAI in a and from a multi-model ensemble mean with all drivers considered in b; regions labelled by dots have
trends that are statistically significant (p<0.05). The trend is calculated and evaluated using the Mann–Kendall test at the 5% significance level. c,
Dominant driving factors of LAI, defined as the driving factor that contributes the most to the increase (or decrease) in LAI in each vegetated grid cell. The
driving factors include rising CO2 (CO2), climate change (CLI), nitrogen deposition (NDE), land cover change (LCC) and other factors (OF), the latter being
defined by the non-modelled fraction of observed LAI trend (see text). A prefix ‘+’ of the driving factors indicates a positive e�ect on LAI trends, whereas
‘�’ indicates a negative e�ect. d, Fractional area of vegetated land in 15� latitude bands (90� N–60� S) attributed to di�erent factors. The fraction of
vegetated area (%) that is dominantly driven by each factor is labelled on top of the bar.

the LAI trend at the global scale. However, this result is uncertain,1

because only two models in the ensemble specifically performed2

factorial simulations with and without nitrogen deposition. A3

slightly negative trend in nitrogen deposition e�ect was observed in4

North America and Europe, where nitrogen deposition rates have5

stabilized, or even declined, during the past three decades24,25.

Q.3

6

LCC is a dominant driver of LAI greening over only 9.6% of7

the global vegetated area, mainly in southeast China and southeast8

United States. Models produce negative LCC e�ects on LAI trends9

in tropical and southern temperate regions where deforestation10

occurred (Supplementary Fig. 11d)26. However, the individual e�ect11

of LCC is apparently outweighed by other factors in these regions,12

and thus does not seem to be dominant. Trends of the LCC e�ect13

simulated by ecosystem models di�er significantly in magnitude,14

and sometimes also in sign. This could be due to di�erences15

in model assumptions relating to whether the productivity of16

secondary vegetation is smaller or larger than that of the vegetation17

it replaces.18

At the global scale, the observed LAI trend can be largely19

accounted for by CO2, climate, nitrogen deposition and LCC.20

However, at regional scales, other factors (OF) not considered in21

models, such as forest management, grazing, changes in cultivation22

practices and varieties, irrigation and disturbances such as storms23

and insect attacks, can be a cause of mismatch between observed24

and simulated LAI trends. The patterns of the e�ect of other factors25

were estimated as a residual, by subtracting the simulated trend26

caused by factors explicitly modelled from the observed local LAI27

trend. OF contributes the most to the observed LAI trend over28

25.0% (increase) and 5.3% (decrease) of the vegetated area (Fig. 3d).29

OF can also encompass non-modelled processes, such as plant30

diversity within a type of vegetation, hydrological and nutrient31

liberation during permafrost thawing, phosphorus and potassium32

limitations, access to ground water by deep roots, and rigid 33

discretization of the simulated vegetation into few plant functional 34

types. Further, uncertainties in existingmodel parameterization and 35

structure (Supplementary Section 7) and biases from the remote 36

sensing data sets (Supplementary Section 6) can cause a mismatch 37

between simulated and observed LAI trends. Interestingly, positive 38

e�ects tentatively attributed to OF are mainly found in areas 39

of intensive ecosystem management, such as northeast China, 40

Europe and India27. Negative OF e�ects are mainly found in 41

northern high latitudes, where most models lack a representation 42

of regionally important ecosystems (peatlands, wetlands) as well as 43

of specific disturbances28,29. 44

Understanding the mechanisms behind LAI trends is a first, yet 45

critical, step towards better understanding the influence of human 46

actions on terrestrial vegetation, and towards improving future 47

projections of vegetation dynamics. Bymaking use of three LAI data 48

sets, an ensemble of ten ecosystem models, and a fingerprinting 49

technique, we assessed the consistency of observed greening and 50

browning patternswith the e�ects of key environmental drivers. The 51

use of a ten-model ensemble increases confidence in the attribution, 52

although model simulations diverge in some aspects, particularly 53

for the impacts of climate change and LCC, which suggests an 54

area for future model improvements. Overall, the described LAI 55

trends represent a significant alteration of the productive capacity 56

of terrestrial vegetation through anthropogenic influences. 57

Methods 58

Methods and any associated references are available in the online 59

version of the paper. 60
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The	driving	factors	include	CO2,	climate	change	(CLI),	nitrogen	deposi>on	
(NDE),	land	cover	change	(LCC)	and	other	factors	(OF).	

A)	

B)	

C)	



Part Two: 
Human-Induced Greening of The Northern 

Extratropical Land Surface 



ª Significant land greening in the northern-extratropical 
latitudes (NEL) has been documented during the 
satellite era (Myneni et al., 1997; Zhou et al., 2001; 
Lucht et al., 2002; Mao et al., 2013; Buitenwerf et al., 
2015; Pan et al., 2011; Liu et al., 2015); 

ª Discernable human impacts on the Earth’s climate 
system have been revealed by using statistical 
frameworks of detection-attribution (Hegerl et al., 
2007; Bindoff et al., 2013);  

ª These impacts, however, were not previously 
identified on the NEL greening signal (Cramer et al., 
2014); 

Background 



ª Examine the spatial and temporal changes of vegetation growth in 
the NEL using latest satellite observations and coupled models; 

ª Attribute recent changes in NEL vegetation activity for the 
1982-2011 period; 

Objective 

ª Two 30-year-long remote-sensing-based Leaf Area Index (LAI) 
datasets; 

o  LAI3g (Zhu et al., 2013); 

o  GEOLAND2 LAI (Baret et al., 2013); 

ª Simulations from 19 coupled earth system models (ESMs) with 
interactive vegetation; 

ª Statistical frameworks of detection and attribution (D&A); 

Approach 



ª ALL: historical anthropogenic and natural  forcings  
o  solar variability and volcanic aerosols as well as well-mixed 

greenhouse gases plus other anthropogenic factors such as 
aerosols, land use/land cover change (LULCC) and/or ozone; 

ª GHG: greenhouse gases forcing only 
o  anthropogenic well-mixed greenhouse gases; 

ª NAT: natural forcing only 
o  solar variability and volcanic aerosols; 

ª CTL: internal variability only  
o  unforced preindustrial control simulations; 

ª esmFixClim2: CO2 physiological effects  
o  radiation code sees constant CO2 concentration of year 1850, 

but carbon cycle sees historical followed by RCP4.5 rise in CO2;  
ª esmFdbk2: greenhouse gases radiative effects  

o  carbon cycle sees constant CO2 concentration of year 1850, but 
radiation sees historical followed by RCP4.5 rise in CO2; 

Multi-simulations from the CMIP5 archive 



IPCC	D&A	definiYon		
ª Detection of change is defined as the process of 

demonstrating that climate has changed in some defined 
statistical sense without providing a reason for that change. 
An identified change is detected in observations if its 
likelihood of occurrence by chance due to internal 
variability alone is determined to be small; 

ª Attribution of causes of climate change is the process of 
establishing the most likely causes for the detected change 
with some defined level of confidence; 

ExisYng	applicaYons	
ª Regional and global changes of temperatures; 
ª Precipitation, arctic moistening, atmospheric moisture content, 

tropical water cycle, river flow, and  evapotranspiration; 
ª ……... 

Hegerl et al., 2007; Bindoff et al., 2013; Cramer et al., 2014  



Methodological Idea

Using model simulations, reconstruct the observational data as a linear
combination of forcings and natural internal variability

=
X

� + ✏

= observations

� = scaling factors

= forcings from simulations

✏ = natural internal variability

Whitney Forbes (ORNL/UTK) Detection and Attribution February 22, 2016 7 / 23

Observa*ons	(LAI3g,	GEOLAND	and	their	average);	
Scaling	factors	(fiCed	using	a	total	least	square	approach);	
Forcings	from	CMIP5	simula*ons	(ALL,	GHG	and	NAT);	
Internal	variability	(CTL);	

ObservaYons	Y	are	regressed	onto	the	expected	response	to		
historical	forcing	changes	X	

ª  If	the	scaling	factor	β	for	a	par*cular	forcing	and	its	confidence	
interval	are	greater	than	0,	then	the	forcing	is	detected;		

ª Once	a	forcing	is	detected,	it	can	be	aCributed	if	β	and	its	
confidence	interval	include	1;	

Methodological Idea

Using model simulations, reconstruct the observational data as a linear
combination of forcings and natural internal variability

=
X

� + ✏

= observations

� = scaling factors

= forcings from simulations

✏ = natural internal variability

Whitney Forbes (ORNL/UTK) Detection and Attribution February 22, 2016 7 / 23

OpYmal	Fingerprint	methods		
	

Allen et al., 1999; Allen and Stott, 2003; Ribes et al., 2013 
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Figure 1: Spatial distribution of LAI trends for 1982-2011. Spatial distribution of the linear 320"
trends in the Growing Season (April-October) LAI (m2/m2/30yr) in (a) LAI3g product, (b) 321"
GEOLAND2 product, (c) mean of LAI3g and GEOLAND2, (d) CMIP5 simulations with natural 322"
forcings alone (NAT), (e) CMIP5 simulations with anthropogenic and natural forcings (ALL), 323"
and (f) CMIP5 simulations with greenhouse gases forcings (GHG). Hatched area in (c) indicates 324"
both satellite-based LAI agree on the increasing trend of LAI, and area with black spots 325"
indicates both satellite-based LAI agree on the decreasing trend of LAI. Hatched area in (d)-(f) 326"
indicates at least 60% of the simulation members agree on the increasing trend of LAI, and area 327"
with black spots indicates at least 60% of the simulation members agree on the decreasing trend 328"
of LAI. 329"
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  	 329	
 330	
Figure 2: Observed and simulated 1982–2011 time series of LAI anomalies. The 3-year mean 331	
growing season (April–October) LAI anomalies (m2/m2) over land of the northern-extratropical 332	
latitudes for both LAI3g and GEOLAND2 satellite-derived observations and CMIP5 simulations 333	
accounting for solely natural forcings (NAT) and greenhouse gas forcings (GHG) as well as 334	
CMIP5 simulations accounting for both anthropogenic and natural forcings (ALL). The ensemble 335	
mean for each set of forcings is given in blue, yellow, and red solid lines for NAT, GHG, and 336	
ALL, respectively. Individual satellite-derived observations are indicated with dashed black lines; 337	
the observational average is given with a bold solid black line. Blue, yellow, and red shading 338	
represent the 5%–95% confidence interval for NAT, GHG, and ALL ensembles, respectively 339	
(computed assuming a Gaussian distribution). The grey-hatched area represents the 5%–95% 340	
confidence interval for the range of variability for the centennial-long preindustrial unforced 341	
control simulations (CTL). 342	
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Observed	and	simulated	LAI	anomalies	

ª  OBS:		+0.143	(LAI3g),	+0.163	(GEOLAND2)	and	+0.153	m²/m²/30yr	(mean)	
ª  IV:						±0.066	m²/m²/30yr	
ª  NAT:		+0.017±0.054	m²/m²/30yr	
ª  ALL:			+0.133±0.089	m²/m²/30yr		
ª  GHG:	+0.129±0.120	m²/m²/30yr		
	
	



Parameterized	frequency	distribuYons	of	LAI	
1982-2011	30-year-long	trends	
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Figure 3: Probability density function of LAI 1982–2011 30-year-long trends. Comparison of 380"
the observed trends (m2/m2/30yr) over land of the northern-extratropical latitudes (NEL) from 381"
both LAI3g and GEOLAND2 satellite-derived observations, against the Gaussian-fitted 382"
probability density function (pdf) of simulated trends from CMIP5 simulations accounting for 383"
unforced preindustrial control variability (CTL, in grey), solely natural forcings (NAT, in blue) 384"
and greenhouse gases forcings (GHG, in green) as well as CMIP5 simulations accounting for 385"
both anthropogenic and natural forcings (ALL, in red). Individual satellite-derived observations 386"
are indicated with long and short dashed vertical dashed black lines for LAI3g and GEOLAND2, 387"
respectively; the observational average is given with a bold solid black line. (a) comparison 388"
between trends as estimated from satellite-derived products and as simulated from both individual 389"
30-year segments taken from the preindustrial unforced control (CTL) simulations and historical 390"
simulations accounting for anthropogenic and natural forcings (ALL). (b) comparison between 391"
trends as estimated from satellite-derived products and as simulated from simulations accounting 392"
solely for natural forcings and greenhouse gases forcings (GHG). The dotted blue pdf 393"
corresponds to the NAT pdf but using a variance equal to that diagnosed from the CTL ensemble. 394"
 395"

(a)" (b)"
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Results	from	opYmal	D&A	for	1982–2011	Yme	
series	of	LAI	anomalies	
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	389	
Figure 4: Results from optimal D&A for 1982–2011 time series of LAI anomalies.  390	
The D&A analysis was performed over land of the northern-extratropical latitudes on ensemble-391	
mean 1982–2011 time series of LAI anomalies. Response patterns were derived from CMIP5 392	
simulations accounting for both anthropogenic and natural forcings (ALL, in red), or greenhouse 393	
gas forcings only (GHG, in green), in a one-signal detection analysis. Observational average of 394	
LAI3g and GEOLAND2 was used as reference in the analysis. (a) Scaling factors (β—see text) 395	
best estimates and their 90% confidence intervals, (b) attributable trends over the 30-year-long 396	
time series, and (c) p-value of the residual consistency test (RCT). Results were obtained from a 397	
total least square (TLS) analysis using the multi-model mean or selected individual model 398	
responses. “Multi1” and “Multi3” refer to two different CMIP5 ensemble means (see text). 399	
Observational uncertainty was assessed using individual satellite-derived observations (LAI3g or 400	
GEOLAND2) regressed onto the “Multi1” response pattern.  401	
 402	
Methods	403	
Detection and attribution. Two distinct statistical approaches were used to detect and attribute 404	
the LAI changes in this study. The simple comparison of observed and simulated LAI trends (Fig. 405	
3) is based on a simple T-test, which is further discussed in the SI3. Then a more conventional 406	
D&A analysis is based on an optimal regression technique in which observations Y are regressed 407	
onto the expected response to historical forcing changes !∗ (i.e., ! =  !∗ ! +  !, where ε 408	

(a)	

(b)	

(c)	
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(a)	
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(c)	

-	

-	
ALL	

-	

-	
GHG	

MulY1:	only	one	simula*on	from	each	model;	MulY3:	models	with	at	least	three	members;		
Error	bars:	90%	confidence	intervals		
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Figure S6. Spatial distribution of LAI trends for 1982-2011. Spatial distribution of the linear trends in the Growing 
Season (April-October) LAI (m2/m2/30yr) in (a) CMIP5 simulations with anthropogenic and natural forcings for those 
models having dynamic nitrogen process (i.e. having the CLM4 model (ALL_N)), (b) CMIP5 simulations with 
anthropogenic and natural forcings for those models having no dynamic nitrogen process (ALL_noN), (c) CMIP5 
simulations with anthropogenic and natural forcings for those models having esmFixClim2 (CO2 induced physiological 
effects, radiation code sees constant CO2 concentration of year 1850, but carbon cycle sees historical followed by 
RCP4.5 rise in CO2) or esmFdbk2 (CO2 induced climate effects, carbon cycle sees constant CO2 concentration of year 
1850, but radiation sees historical followed by RCP4.5 rise in CO2) experiments (ALL_esm), (d) CMIP5 simulations 
with greenhouse gases forcings for those models having esmFixClim2 or esmFdbk2 experiments (GHG_esm), (e) 
CanESM2 simulations with land use/land cover change only (LULCC_CanESM2), (f) the esmFixClim2 simulations, 
and (g) the esmFdbk2 simulations. The hatched area indicates at least 60% of the simulation members agree on the 
increasing trend of LAI, and area with black spots indicates at least 60% percent of the simulation members agree on 
the decreasing trend of LAI. These figures are designed to provide insights on the possible processes behind the 
anthropogenic impacts (e.g., nitrogen deposition, land use/land cover change, and the CO2 induced physiological vs. 
climate effects) on the vegetation growth. 
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SpaYal	distribuYon	of	the	Growing	Season	LAI	trends	

With	N	 Without	N	

LULCC	 CO2	 Climate	



SpaYal	distribuYon	of	LAI,	precipitaYon	and	
temperature	trends	
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Figure S8. Spatial distribution of LAI, precipitation and temperature trends for 1982–2011. Spatial distribution of 
the trends in the growing season (April–October)  
(a) LAI (m2/m2/30yr),  
(b) precipitation (mm/day/30yr), and  
(c) temperature (°C/30yr) from the CMIP5 esmFdbk2 simulations (GHG-induced climate effects, carbon cycle sees 

constant CO2 concentration of year 1850, but radiation sees historical followed by RCP4.5 rise in CO2).  
The hatched area indicates at least 90% of the simulation members agree on the increasing trends, and area with black 
crosses indicates at least 90% percent of the simulation members agree on the decreasing trends. The (a) is identical to 
that of Fig. S7g. These figures are designed to provide insights on the possible climatic drivers of LAI changes for the 
GHG-induced climate change shown in Fig. S7g.  

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

LAI	(m2/m2/30yr),	precipitaYon	(mm/day/30yr),	and	temperature	(°C/30yr)	from	the	CMIP5	
esmFdbk2	simula*ons.	

Climate_LAI	 PrecipitaYon	 Temperature	



 

ª Weaker	interannual	variability	for	the	simulated	LAI	
o  Weak	or	no	representa9on	of	vegeta9on	mortality,	disturbance	and	successional	dynamics;		
o  Underes9ma9on	 of	 interannual	 precipita9on	 variability	 in	 CMIP	 models	 over	 Northern	

Hemisphere	(NH)	land;	

ª  Possible	persistent	biases	in	the	mulY-model	ensemble	means			
o  Overpredic9on	 of	 growing	 season	 length	 due	 to	 advanced	 spring	 growth	 and	 delayed	

autumn	senescence	in	NH	temperate	ecosystems;	
o  Early	and	late	season	model	biases	seem	to	be	sta9onary	in	9me	for	this	study;	

ª  The	lack	of	global	offline	LAI	simulaYons	
o  Be[er	understanding	and	ranking	the	mul9ple	reasons	for	deficiencies	in	CMIP5	simula9ons;		
o  Will	be	overcome	in	the	CMIP6	by	conduc9ng	the	LS3MIP;	

ª  	LimitaYons	in	long-term	remote-sensing	data	
o  Contaminated	by	clouds	and	snow	cover;	
o  Likely	influenced	in	1991	by	the	erup9on	of	Mount	Pinatubo	and	subsequent	loss	of	orbit	by	

NOAA	11,	seen	par9cularly	in	the	world’s	forests;	
o  The	merging	of	reflectance	informa9on;	
o  The	observed	interannual	variability	might	be	ar9ficially	increased,	but	our	key	findings	are	

robust	to	these	issues	based	on	sensi9vity	tests;	

	

Discussion	and	summary 



 

ª NEL has experienced an enhancement of vegetation activity 
diagnosed in satellite vegetation indexes and CMIP5 simulations; 

ª Previous work has focused on phenological variation, interannual 
variability, and multiyear trends; spatiotemporal changes in LAI 
were attributed to variation in climate drivers (mainly 
Temperature and Precipitation); 

ª This work goes beyond previous studies by using D&A methods 
to establish that the trend of strengthened northern vegetation 
greening is clearly distinguishable from both IV and the 
response to natural forcings alone;  

ª It can be rigorously attributed, with high statistical confidence, 
to anthropogenic forcings, particularly to rising atmospheric 
concentrations of greenhouse gases; 

Discussion	and	summary 



ª D&A of vegetation growth is essential for strategic decision-
making in ecosystem management, agricultural applications 
and sustainable development and conservation;  

ª Future vegetation growth and drivers remain to be determined 
because of nonlinear human-ecosystem-climate 
interactions under global warming (e.g., droughts, fire, 
vegetation acclimation to temperature and elevated CO2, and 
nutrient limitation);  

ª Society should consider both intended and unintended 
consequences of its interactions with terrestrial ecosystems 
and the climate system; 

Discussion	and	summary 
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The First Study to Demonstrate that Greening  
of Vegetation in the Northern Hemisphere  
is Caused by Anthropogenic Greenhouse Gas 
Emissions 

Objective 
•  Use a formal detection and attribution algorithm to 

determine if the observed greening of extratropical 
Northern Hemisphere vegetation is caused by  
anthropogenic GHG emissions 

New science 

•  Satellites observed an increase in Northern 
Hemisphere plant productivity from 1982-2011.This 
trend was present in simulations from 19 ESMs with 
combined anthropogenic and natural forcings.   

•  Neither internal climate variability nor natural 
forcings alone could account for the trend, but with 
high statistical confidence, the observed greening 
can be attributed to the anthropogenic increase in 
atmospheric GHG concentrations. 

Significance 

•  Climate drivers of increased Northern Hemisphere 
leafiness for the past 3 decades were clarified 

•  This is the first definitive evidence of a discernible 
human fingerprint on physiological vegetation 
changes other than phenology and range shifts 

Jiafu Mao et al. (ORNL authors: Mao, Shi, Thornton, Ricciuto, Hoffman). 2016. “Human-
induced greening of the northern extratropical land surface.” Nature Climate Change, 
10.1038/nclimate3056 

Objective 1.1 Provide S&T Results with Meaningful Impact on the Field   
High-Impact Publications – ACME, BGC SFA, TES SFA 
(CCSI) 

Spatial distribution of leaf-area index trends 
observed by satellite and simulated by CMIP5 

models over the  period 1982–2011 

Khaleel	et	al.,	2016,	DOE	BER	Science	&	Technology	Review	
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