A machine learning approach targeting parameter estimation for PFT coexistence modeling using ELM-FATES

Lingcheng Li¹ (Lingcheng.li@pnnl.gov)

Yilin Fang², Zhonghua Zheng³, Mingjie Shi¹, Marcos Longo⁴, Charles D. Koven⁴, Jennifer A. Holm⁴, Rosie A. Fisher⁵, Nate G. McDowell^{1,6}, Jeffrey Chambers⁴, L. Ruby Leung¹

Atmospheric Sciences and Global Change Division, Decific Northwest National Laboratory, Richland, WA, USA
 Earth System and Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
 Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
 Climate and Ecosystem Sciences Division, Lowrence Berkeley National Laboratory, Berkeley, CA, USA
 Climate and Ecosystem Sciences Division, Lowrence Berkeley National Laboratory, Berkeley, CA, USA
 Climate and Ecosystem Sciences, Division, Lowrence Berkeley National Laboratory, Berkeley, CA, USA
 Climate and Ecosystem Sciences, Washington State University, PUBox 644236, Pullman, WA, USA

W. Davel, N. Chambers, J. and Leung, R. A machine leaving approach rangeting paremeter

1-25 0 2.00 GUSD Ion of it https://doi.org/10.5194/egusohere 2022.12

Office of

Science

Tropical forest dynamics are crucial for global carbon cycle

- ~25% of the carbon in terrestrial biosphere
 - ~33% of terrestrial net primary production

Experiencing a significant decline in resilience,
 increased water limitations and climate variability

- Increasing stress from climate change and deforestation
 - e.g., drought, fire, extreme storms
- Better understanding and <u>modeling tropical forest dynamics</u> under climate change

[Bonan et al., 2008; Mitchard et al., 2018; Forzieri et al., 2022]

Modeling vegetation dynamics

- Commonly used tools: traditional DGVMs, forest-gap models, and "cohort-based" models
- Among these tools, "Cohort-based" models have advantages

Represent sufficient ecosystem dynamics, and maintain relatively high computational efficiency

ELM-FATES

between different PFTs

ELM

Challenge of coexistence modeling and coexistence theory

• The challenge in ELM-FATES: Reasonably simulate the coexistence of plant functional types (PFTs)

Challenge of coexistence modeling and coexistence theory

• The challenge in ELM-FATES:

Reasonably simulate the coexistence of plant functional types

Limitations in previous studies

Commonly use **filtered ensemble approach** to select parameters

- □ generate a parameter ensemble
- □ generate ensemble simulations
- $\hfill \Box$ filter out the coexistence runs
- Huang et al. (2020)

~1.4%, 70 one-at-a-time experiments before obtaining one reasonable parameter set

• Buotte et al. (2020)

~0.3% or 5.5%, two stages of experiments to select optimal parameters

Low efficiency and low percentage of PFTs coexistence experiment !!

Research goal and testbed

Research goal

Utilize machine learning (ML) to

- alleviate the challenge of modeling PFTs coexistence
- reduce model errors against observations

XGBoost

SHAP

Testbed

- ELM-FATES
- tropical forest site: Manaus,
- o data: meteorological forcing, GPP, ET, SH, AGB

Model configuration

Two PFTs represented in FATES

- Early vs. late successional broadleaf evergreen tropical tree
- represent a primary axis of variability in tropical forests

Low

8

Model configuration

- o 11 trait parameters
- reflect strategic tradeoffs between two PFTs
- trait ranges based on tropical tree measurements

Parameter type	Parameter name	Symbol	Unit	Early PFT	Late PFT	Range	
Optimized parameter	Maximum carboxylation rate of Rub. at 25 °C, canopy top	V _{cmax}	$\mu mol \\ CO_2/m^2/s$	V _{cmax,early} >	> V _{cmax,late}	40–105	
	Specific leaf area, canopy top	SLA	m²/gC	SLA _{early} >	> SLA _{late}	0.005–0.04	
	Background mortality rate	M_{bk}	1/yr	M _{bk,early} >	> M _{bk,late}	0.005-0.05	
	Wood density	WD	g/cm ³	WD_{early} <	< WD _{late}	0.2–1.0	
	Leaf longevity	L _{leaf}	year	$L_{leaf,early}$ <	< L _{leaf,late}	0.2–3.0	
	Maximum size of storage C pool, relative to the maximum size of leaf C pool	CR _{s2l}	_	sa	ne	0.8–1.5	
Fixed parameter	Root longevity	L_{root}	year	0.9	2.6		
	Fine rooting distribution profile parameter a	R _a		7	7		٦
	Fine rooting distribution profile parameter b	R_b		2	0.4		
	BTRAN threshold below which drought mortality begins.	M _{btran}		0.4	1.0E-06		
	Soil water potential at full stomatal closure	$\psi_{closure}$	mm	-113000	-242000		

Drought resistant: Late PFT > Early PFT

Overall flowchart and research questions

P1. Parameter sampling

Latin hypercube sampling, and tradeoffs $V_{cmax,early} > V_{cmax,late}$, $SLA_{early} > SLA_{late}$ $M_{bk,early} > M_{bk,late}$, $WD_{early} < WD_{late}$ $L_{leaf,early} < L_{leaf,late}$

P2. Initial FATES experiments

Exp-OBS, consideration of observed trait relationships

<u>Exp-CTR</u>

Pacific

Northwest

P3. Build ML models and sensitivity analysis

ML models train and test SHAP importance analysis

P4. Parameter selection and validation

Exp-ML, ELM-FATES simulation using ML selected parameters

Overall flowchart and research questions

P1. Parameter sampling

Latin hypercube sampling, and tradeoffs $V_{cmax,early} > V_{cmax,late}$, $SLA_{early} > SLA_{late}$ $M_{bk,early} > M_{bk,late}$, $WD_{early} < WD_{late}$ $L_{leaf,early} < L_{leaf,late}$

P2. Initial FATES experiments

Exp-OBS, consideration of observed trait _ relationships

Exp-CTR

P3. Build ML models and sensitivity analysis

ML models train and test SHAP importance analysis

P4. Parameter selection and validation

Exp-ML, ELM-FATES simulation using ML selected parameters

Specific research questions

- Whether observed trait relationships can improve PFTs coexistence?
- Can simple correlations be constructed to improve PFTs coexistence?
- Can ML selected parameter values improve
 PFTs coexistence

Whether observed trait relationships can improve PFTs coexistence modeling?

12

Two experiment ensembles

- Exp-CTR, traits tradeoffs
- Exp-OBS, traits tradeoffs + observed trait relationships
- 1500 runs per experiment, 350 years to reach equilibrium state,

Whether observed trait relationships can improve PFTs coexistence modeling?

Two experiment ensembles

- Exp-CTR, traits tradeoffs
- Exp-OBS, traits tradeoffs + observed trait relationships
- 1500 runs per experiment, 350 years for each run

$$L_{leaf} = 0.0001 \times SLA^{(-2.32)}$$
(2)
$$WD = -0.583 \times \ln(SLA) - 1.6754$$
(3)

Whether observed trait relationships can improve PFTs coexistence modeling?

- Exp-CTR, traits tradeoffs
- Exp-OBS, traits tradeoffs + observed trait relationships

14

Whether observed trait relationships can improve PFTs coexistence modeling?

<mark>No</mark>

15

- Exp-CTR, has more PFT coexistence experiments
- Exp-OBS, slight better water carbon and energy simulations, but worse PFT coexistence

PFT coexistence, Biomass ratio between early PFT and total biomass

 $BR_{e2t} \in (0.9, 1.0]$, "early" $BR_{e2t} \in [0.1, 0.9]$, "coexistence" $BR_{e2t} \in [0.0, 0.1)$, "late"

Whether observed trait relationships can improve PFTs coexistence modeling?

Why observation constrains do not yield better PFT coexistence ?

1. ELM-FATES limitations

Implicit representation of trait tradeoff in current ELM-FATES model may not be well balanced, which may differ from the observed trait relationships that lead to coexistence in the real world.

2. Observation data limitation

Large-scale trait relationships may not reflect the small-scale trait relationships.

3. Simple relationship representation

The observed trait relationships are based on simplified equations, which may not be able to comprehensively reflect tradeoffs between traits.

Koven et al. (2020) and Longo et al. (2020):					
$M_{bk} = 0.0082 \times e^{(0.0153 \times V_{cmax})} $ (1)					
$L_{leaf} = 0.0001 \times SLA^{(-2.32)} $ (2)					
$WD = -0.583 \times \ln(SLA) - 1.6754$ (3)					

16

Exp-CTR will be used for the following analysis

Can simple correlations be constructed to guide PFTs coexistence modeling?

Early

Late

Coexistent

Early vs. late parameters

Parameter space of Exp-CTR

Early–late parameters

No

18

Based on Exp-CTR, build empirical simple parameter correlations

- $SLA_{late} > 0.35 \times SLA_{early} + 0.003$
- $V_{cmax,diff} < -4800 \times SLA_{diff} + 100$
- $WD_{diff} > 55 \times SLA_{diff} 1.3$

Pacific Northwest

Within these constrained parameter spaces,

- Coexisting cases increases from 20.6% to 32.6%
- 67.4% is still either early or late
- Optical cases account only about 2.3%

Build ML surrogate models

In Exp-CTR, 1500 samples of

- Xn, parameters and their difference
 e.g., V_{cmax,early}, SLA_{diff},
- Yi, ELM-FATES outputs
 e.g., ET, SH, GPP, AGB, BW

Build emulators $Y_i = f_i(X_1, X_2, X_3, ...)$

> Machine learning algorithm e.g., XGBoost (Chen et al., 2016)

> > SHAP (SHapley Additive exPlanations, Lundberg et al., 2017)

ightarrow Parameters selection

19

NATIONAL LABORATORY

ML surrogate models have good performance

20

- 6 XGBoost surrogate models: ET, SH, BW, GPP, AGB, and BR_{e2t}
- Overall good performance in training and testing samples
 - AGB and BR_{e2t} are relatively difficult to predict

Pacific Northwest

Which parameters are important

• Only 3 features dominate the prediction of ET, SH, BW, and GPP

- More than 6 features are most important for predicting AGB and BR_{e2t}
- Parameter differences between early and late PFT are very important, e.g, SLA_{diff}, Vcmax_{diff}
- Closely related to PFT competition

Parameter selection using ML surrogate models

22

Parameter values selection using ML surrogate models

23

• 99.1% ML selected parameters capture capture the empirical correlations

□ ML surrogate models implicitly learned these simple relationships

Parameter values selection using ML surrogate models

Comparison between PFT coexistence parameters of Exp-CTR and ML select parameters

• Consistence

24

- Exp-CTR early/late
- Exp-CTR coexistence
- **ML** selection

• Difference

ML selected parameter values largely improve FATES simulation

25

- ML selected parameters

 better capture observations
- ML selected parameters

 more well-coexistent runs

26

Compared with Exp-CTR and Exp-ML have

- 3.6 times more coexistence cases, 20% 273%
- 23.6 times more optimal cases, 1.4% 33%, with higher model accuracy

Category	$\begin{array}{ll} BR_{e2t} & \text{AGB_bias} & \text{GPP_bias} \\ \in [0.1, 0.9] & < 15\% & < 15\% \end{array}$	AGB_bias	GPP_bias	ET_bias	SH_bias	BW_bias	Exp-CTR		Exp-ML		Ratio
		< 15%	<15% <15	< 15%	< 15% < 15%	count	percent	count	percent	Ratio	
Late							130	8.7%	174	11.6%	1.3
Coexistence							309	<mark>20.6%</mark>	1097	<mark>73.1%</mark>	<mark>3.6</mark>
Early							1059	70.6%	229	15.3%	0.2
All dead							2	0.1%	0	0.0%	
Total							1500		1500		
	+						309	20.6%	1097	73.1%	3.6
Add observation constraints	+	+					98	6.5%	620	41.3%	6.3
	+	+	+				85	5.7%	618	41.2%	7.3
	+	+	+	+			23	1.5%	572	38.1%	24.9
	+	+	+	+	+		23	1.5%	502	33.5%	21.8
	+	+	+	+	+	+	21	<mark>1.4%</mark>	495	<mark>33.0%</mark>	<mark>23.6</mark>

27

- Coexistence show large overlaps with the early/late
- No simple correlations can be built to distinguish the coexistence from the early and late

0.0

ML selected parameter values largely improve FATES simulation

• ML guided optimal simulations reproduces the annual means and seasonal variations of water, energy and carbon fluxes

Pacific Northwest

Parameter tradeoffs align with niche-based coexistence theory

Environmental Filtering convergence in strategy Niche partitioning divergence in strategy

Difference should not be considerable

• Large difference in SLA more likely favors the early PFT

Some degree of differences should exist or balance

- Small difference in SLA more likely favors the late PFT
- For Exp-CTR, coexistence have intermediate differences in SLA, V_{cmax}, WD, M_{bk} and L_{leaf}
- For Exp-ML, coexistence have intermediate differences in SLA, V_{cmax}, and L_{leaf}

 M_bk and WD show large difference but they show tradeoff to make coexistence

29

Niche-based coexistence theory

Parameter relative difference (%) between early PFT and late PFT

30

Li, L., Fang, Y., Zheng, Z., Shi, M., Longo, M., Koven, C., Holm, J., Fisher, R., McDowell, N., Chambers, J., and Leung, R.: A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0), EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1286, 2023. (under revision)

Acknowledgement

This research was supported as part of the Next Generation Ecosystem Experiments-Tropics, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.

U.S. DEPARTMENT OF ENERGY

Office of Science