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Problem: ESM soil carbon models
don’t seem to have a lot of predictive
power, even for the mean state. We’d
like to benchmark to constrain models

Soil carbon [Pg C]

Todd-Brown et al., 2013



Current ILAMB soil benchmarks

SoilCarbon / HWSD / 2000-2000 / global / CLM40CRUNCEP

Mean State All Models Data Information

Globe

Model Data Period Mean [Pg] Bias [Pg] Bias Score [1] Spatial Distribution Score [1] Overall Score [1]
Benchmark [ 1,295.165
CLM40CRUNCEP [-] 668.557 -640.496 0.583 0.618 0.6
CLM40GSWP3 -1 498.855 -755.294 0.559 0.465 0.512
CLM45CRUNCEP [-] 1,137.315  -65.471 0.604 0.586 0.595
CLM45GSWP3 -1 857.208 -359.958 0.617 0.777 0.697
CLMS0CRUNCEP [-] 1,943.85 769.231 0.58 0.042 0.311
CLM50GSWP3 -1 1,029.019 -186.057 0.6 0.178 0.389

Temporally integrated period mean
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Some issues with current approaches

Stock-based, so errors in plant inputs propagate into
the soil and show up as errors in soil.

Integral- or Spatially-based, so errors in climate show
up as errors in soil.

Large dynamic range of soil stocks means that errors in
high latitude are weighted more than errors in tropics.

Doesn’t distinguish between what the models are
trying but failing to predict (mineral soils) from things
they aren’t even trying to predict (peatlands).

Would like to construct some sort of relationship
benchmark to mitigate some of these issues.



How to construct a simple model of soil carbon
that works across the world’s climates?

Simple reservoir theory: Treat soil system as a
reservoir, in which losses are proportional to stocks
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NPP Soil C Turnover Times
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stock
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dominated by
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Koven et al., Biogeosciences, 2015



However, transient uncertainty in ESM carbon
stocks mainly driven by productivity
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Temperature Sensitivity of respiration:
the Q,, approximation
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Calculate turnover time as ratio of carbon stocks to fluxes.
Assumes quasi-equilibrium state.
HWSD & NCSCD Soil C to 1m (kg m?)
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Plot turnover as function of mean annual air
temperature

Inferred Turnover Time (yr)
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Color by precipitation to see where (low) moisture
effects are dominant
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Limit condition of productivity becoming small and turnover
becoming large along both aridity and temperature gradients,
but high soil carbon only in cold climates
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Peat soils, i

Non-péat soils:
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|dentify peatlands to see where (high) moisture effects
are dominant
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Inferred Turnover Time (yr)

ldentify (low)-moisture control by P-
PET threshold
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Isolate temperature from moisture effects by removing
gridcells that are either too wet or too dry
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Take derivative of best-fit curve to estimate a
“climatological Q,,"

Inferred Climatological Q;,
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Note that this is just for carbon to 1m depth, so different from the
larger permafrost carbon issue, which is dominated by deep carbon.



Inferred Turnover Time (yr)
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How do CMIP5 ESMs compare?
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A simple scaling theory for why temperature
sensitivity is high in cold climates
Using daily soil
temperatures and mean

annual air temperatures
from a land surface model:

k= f(T)
T=1/k

Q,,=1.5at 10cm |
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A simple scaling theory for why temperature
sensitivity is high in cold climates
Using daily soil
temperatures and mean

annual air temperatures
from a land surface model:

k= f(T)
T=1/k

Lloyd-Taylor at 10cm _

Turnover time of respiration function (yr)

Method 2: Arrhenius .

equation following Lloyd 10 20 40 o 10 20 30
and Taylor (1994), using Mean Air Temperature (°C)
10cm soil temperatures



A simple scaling theory for why temperature
sensitivity is high in cold climates
Using daily soil
temperatures and mean

annual air temperatures
from a land surface model:

k= f(T)
T=1/k
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A simple scaling theory for why temperature
sensitivity is high in cold climates
Using daily soil
temperatures and mean

annual air temperatures
from a land surface model:

k= f(T)
T=1/k

| Thawed-only Q,,=1.5 over 0-1m interval |

Turnover time of respiration function (yr)

Method 4: Q,,=1.5 when .
thawed, k = 0 when frozen, 10 20 40 o 10 20 30
using soil temperatures at Mean Air Temperature (°C)
each level, and then calculate
mean k across 0-1m interval
Implication: Properly representing the scaling of freeze/thaw in both volume and time
is essential to understanding temperature controls on soil carbon cycling




How does CLMA4.5 compare to observational
benchmark?
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CLMA4.5 can approximate the change in slope due to vertically-resolved soil carbon
dynamics

Comparison against benchmark supports parameter choice that allows
decomposition to proceed freely in deep soils



Development of an actual Benchmark

* Approach 1: Filter data as observations (P-PET
threshold), fit quadratic to log(tau), and
compare regression coefficients

* Approach 2: Filter data, bin by temperature
interval and take mean across bins, calculate
RMSE difference between that and obs



Benchmarking results

Model RMSE Quadratic | Quadratic Quadratic Residual
relative to Regression | Regression Regression Variance
observational | Intercept Linear Coefficient after
trend (o) Coefficient (b) | (a) Regression

Observations n/a 1.56E+00 -4.01E-02 7.84E-04 9.91E-02

CCSM4 0.26 1.37E+00 -2.28E-02 1.49E-04 1.98E-02

MPI-ESM-LR 0.19 1.61E+00 -1.95E-02 2.86E-05 1.72E-02

GFDL-ESM2G 0.22 1.52E+00 -4.85E-02 5.92E-04 2.88E-02

HadGEM?2 0.32 1.46E+00 -8.04E-03 -4.76E-04 4.53E-02

IPSL-CMS5A-LR 0.27 1.36E+00 -2.29E-02 5.37E-05 2.08E-02

MIROC-ESM 0.31 1.90E+00 -2.17E-02 -3.17E-04 2.81E-02

CLM4.5, Z;=0.5m 0.18 1.76E+00 -3.39E-02 3.63E-04 5.55E-02

CLM4.5, Z; =10m 0.11 1.51E+00 -3.44E-02 4.80E-04 4.77E-02

MIMICS 0.18 1.73E+00 -3.49E-02 5.22E-04 3.70E-01




Example of Quadratic regressions on models
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Soil moisture control in CLM

s A Ecology, 68(5), 1987, pp. 1190-1200
CLM equation: © 1987 by the Ecological Society of America

Vi BARLEY STRAW DECOMPOSITION IN THE FIELD:
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OLOF ANDREN AND KEITH PAUSTIAN
Department of Ecology and Environmental Research, Swedish University of Agricultural Sciences,
S-750 07 Uppsala, Sweden
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Moisture influence was assumed to be a log-linear
function of soil water potential (¥):

Which is from this paper, but...

=1 5 \I, > \I,maxE
CLM value | Original _log(¥in /)
v (6C)
log(\Ilmin E/\I,max E)
reference
= O > ‘I, < \IlminE
Ll) max 10 MPa -0.35 MPa where ¥ is the soil water potentialand ¥, pand ¥, o

are boundary values for maximum (i.e., wet soil) and
minimum (i.e., dry soil) water potentials, expressed in
megapascals (as negative values). Since the soil was

Ll)min saturation Field capacity light in texture and well drained, negative effects on
0.005 M decomposition due to waterlogging were not consid-
(_ . pa) ered. The response function is similar to others used

for soil respiration (Wilson and Griffin 1975, Orchard
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Developments along the path: CLM4 -> CLMA4.5 -> CLM5
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What’s going on with the low
climatological Q,, in warm climates?
Some possible explanations:

Increased clay content of tropical soils

Microbial kinetic limitations, either at the
community level (Wang et al., 2016) or at the
individual level (Tang and Riley, 2015)

More complex interplay of temperature and
moisture effects than our analysis allows
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Incorporation
of metric in soil
Biogeochemical

testbed
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“Global Loam” Experiment
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Conclusions

We've constructed a global, multivariate relationship that is useful for
constraining some of the long-term climate sensitivity of ESM soil models.

Result is that long-term temperature sensitivity as measured by
“climatological Q10” is itself sensitive to temperature, and higher in cold
than warm climates

A simple explanation for high cold-climate sensitivity is a purely physical
scaling argument relating soil freeze-thaw dynamics to air temperature

CMIP5 models don’t capture qualitative behavior, which can be captured
via quantitative benchmarks, and this systematic bias likely implies that
they are underestimating transient soil C sensitivity to warming as well

Low warm-climate sensitivity remains to be explained; multiple possible
reasons, which would have different implications for transient behavior

Benchmark useful as a constraint in both identifying structural
requirements as well as some parameter calibration in CLM



