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Accurately capturing relationships between climate drivers and
land-atmosphere fluxes is crucial for a predictive ESM.
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Ideally we need models to be consistent with constraints across
spatial scales; this might require new constraints
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Gridded satellite data about vegetation productivity historically
derived from vegetation indices, which are not tied to
photosynthetic mechanism

WAV

NDVI = (NIR - Red) / (NIR + Red)

Z. Butterfield



Solar-induced Chlorophyll Fluorescence provides a new remote-
sensing based proxy for vegetation productivity

Sunlight

Photons/energy must be
accounted for, as
photosynthesis, heat waste, SIF

or SIF \
Heat &

4

Photochemistry

Z. Butterfield



Satellite maps of SIF show correlation with modeled GPP

A Chlorophyll a fluorescence at 755 nm, June 2009 through May 2010 average
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SIF has shown strong correlations with tower-based GPP at
seasonal scales, BUT there are substantial differences in shoulder
seasons compared to other remote sensing metrics

Deciduous broadleaf forest Evergreen needleleaf forest
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For climate feedbacks we might care more about interannual
variability — how do these compare?
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For climate feedbacks we might care more about interannual
variability — how do these compare?
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Conclusion: 1AV in productivity is pretty noisy, maybe regional scale
information can be used more robustly

Canadian Great Plains Boreal Coniferous Forest
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At regional scales, we see anticipated differences in seasonal cycle,
but improved convergence in IAV
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Quantitative differences remain across the four regions
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We defined seasons based on temperature thresholds
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We defined seasons based on temperature thresholds
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For temperate mixed forests, IAV in productivity metrics was
generally only statistically significant during spring
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Other regions show more
widespread statistically significant
correlations, but annual scale
correlations are generally weaker
than those at seasonal timescales
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We use singular value decomposition (SVD) to determine dominant modes
of interannual variability at regional scales

GOME-2 SIF
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SVD also tells us how important a given mode of variability is during a given year
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The amplification and redistribution vectors together account for majority of
variance in the observational record

(a) Midwest Cropland, 2012 (b) Midwest Cropland, 2013
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These modes of variability are common across regions and across datasets!
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What can we do with the SVD results??

Correlation between annual weights and IAV in climate variables reveals drivers of
modes of variability
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Extent to which redistribution predominates is larger at low latitudes than high latitude
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Net ecosystem production anomaly (PgC y~*)

Applying this approach to a model:
Understanding reasons behind low CO: IAV in CESM2
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Model singular vectors are similar to those in satellite constraints,
suggesting modes of variability in CESM are reasonably captured
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First two singular vectors explain a large fraction of variability
(>75%) most locations, with major exception being tropical forests

Fraction explained by Redistribution

R2

Wieder et al., in prep



We can assess how the annual weights correlate with
climate drivers at the gridcell level
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Amplification correlated with high summer temperature at
high latitudes
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Amplification correlated with high water availability in SON within the tropics
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Redistribution correlated with high spring temperatures in boreal/
temperate regions
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Redistribution shows mixed patterns with temperature and moisture
across tropical forests

Correlation Coefficient

Wieder et al., in prep



IAV in primary productivity is noisy, but information converges at
regional scales

SVD approach illustrates modes of variability that dominate IAV signal,
which can be useful for determining whether a model is qualitatively (if
not quantitatively) getting it “right”

Observational constraints show that high latitude ecosystems are less
redistributive: it is hard to catch up given a late spring; conversely it may
be hard to deplete water resources given a highly productive spring

IAV can’t be interpreted properly without the context of a mean annual
cycle



