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Terrestrial ecosystem fluxes are sensitive to 
climate variations and are expected to have large 

feedbacks to climate change

over a factor of more than four, from 229 GtC K21 (model F) to
2133 GtC K21 (model A), with a C4MIP mean of 269 GtC K21 and
standard deviation of 39 GtC K21. This range is even larger if the
HadCM3 ensemble members are included. We therefore focus on
reducing the larger uncertainty, namely that in cLT.

Our inspiration for deriving a multi-model emergent constraint
comes from a recent study that showed a strong relationship between
the contemporary temperature sensitivity of seasonal snow cover and
the magnitude of the snow–albedo feedback, across more than 20
GCMs7. Because the seasonal cycle of snow cover can be estimated
from observations, this model-derived relationship converts the con-
temporary observations to a constraint on the size of the snow–albedo
feedback in the real climate system, for which there is no direct reliable
measurement. Emergent constraints of this type make use of the often
bewildering spread among Earth-system model projections to reduce
uncertainties in the sensitivities of the real Earth system to anthro-
pogenic forcing. They are distinct and complementary to bottom-up
constraints arising from process-based studies.

It made sense a priori to look for an emergent constraint linking the
sensitivity of tropical land carbon to interannual variability (IAV) in
the growth rate of atmospheric CO2. Tropical land carbon changes in
response to climate through changes in the net land–atmosphere CO2

flux into and out of this carbon store. Critically, the sensitivity of this
net tropical CO2 flux is revealed by the IAV in the CO2 growth rate,
because this is known to be dominated by the response of the tropical
land carbon cycle to climatic anomalies (Supplementary Fig. 1a) such
as the El Niño/Southern Oscillation8,24,25. Hence, some relationship
between the IAV in CO2 and the longer-term sensitivity of tropical
land carbon storage to climate change (cLT) is to be expected, as long as
processes that are not evident in the short-term variation of the CO2

fluxes (for example forest dynamics or changes in long-lived soil car-
bon pools) do not dominate the long-term response. This is our

working hypothesis to be tested against the C4MIP models, which
include a range of representations of slow vegetation and soil processes3.

Figure 2a compares the observed IAV in the growth rate of global
atmospheric CO2 (refs 26, 27) with the IAV in the annual mean trop-
ical temperature28. In both cases, we have chosen observational vari-
ables (global mean atmospheric CO2 and mean land-plus-ocean
temperature between 30uN and 30u S) for consistency with the vari-
ables available from the C4MIP models. Aside from the years imme-
diately after the volcanic eruptions24 of Mount Agung, El Chichon and
Mount Pinatubo, the IAV in the growth rate of atmospheric CO2 is
linearly correlated with the IAV in the tropical temperature (r 5 0.65
(correlation coefficient), P , 0.0001; Fig. 2b), with a best-fit ‘IAV sensi-
tivity’ of 5.1 6 0.9 GtC yr 21 K21. Excluding these volcano-affected
years has an impact on the best-fit sensitivity of less than 5%, but avoids
the complication of diffuse-light fertilization of plant growth29, which
is not included in any of the C4MIP models. We also find a similar
sensitivity regardless of which tropical temperature reconstruction we
use. There is a greater sensitivity to the choice of the global atmospheric
CO2 data set, but this does not affect our overall conclusions (Sup-
plementary Table 1).

A similar calculation is made for each of the coupled climate–
carbon-cycle models, to derive the sensitivity of the CO2 growth rate
to tropical temperature for the period 1960–2010. Compared with the
observational data, models tend to overestimate the IAV in the tropical
temperature by a factor of up to two, and to overestimate the IAV in
the CO2 growth rate by a factor of up to three. The correlation between
these variables is underestimated in some models (F, B and D) and
overestimated in others (A, E and C). Hence, IAV sensitivity varies
across the C4MIP model ensemble, from 2.9 6 1.4 GtC yr21 K21

(model F) to 9.7 6 0.7 GtC yr21 K21 (model A), with most of this
range resulting from differences in the sensitivity of heterotrophic
respiration to climate (Supplementary Fig. 1b). The three HadCM3

Table 1 | Summary data for climate-carbon cycle projections
Model Change in global atmospheric CO2 (p.p.m.v.) Change in tropical land carbon (GtC) Change in tropical temperature (K)

Coupled Uncoupled Coupled Uncoupled

A HadCM3LC 689 477 211 354 3.93
B IPSL 453 381 177 365 2.70
C MPI 524 443 242 413 4.36
D CCSM1 483 465 319 364 1.53
E FRCGC 589 465 118 271 3.61
F LOOP 489 460 185 263 3.30
G HadCM3C-st 599 331 2148 317 4.41
H HadCM3C-a 445 333 26 168 3.76
I HadCM3C-h 589 246 2165 251 4.08

Changes in atmospheric CO2, tropical land carbon and tropical near-surface air temperature (30uN–30uS), as simulated by the nine climate–carbon GCMs analysed in this study. Models A to F are from the C4MIP
study3, which prescribed the SRES A2 CO2 emissions scenario. For these models, the changes are calculated over the period 1960–2099.Models G to I are from a land carbon-cycle parameter ensemble carried out
with the HadCM3 model under the SRES A1B scenario14, and were run only to 2080, so differences here are for 1960 to 2080. In all cases, model runs were carried out both including and excluding climate effects
on the carbon cycle (‘coupled’ and ‘uncoupled’, respectively), so that the impacts of climate–carbon-cycle feedbacks could be diagnosed.
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Figure 1 | Projected changes in land carbon storage in the tropics from
coupled climate–carbon-cycle models. a, Upper and lower estimates from the
C4MIP models3 (A–F in Table 1) for uncoupled (black lines) and coupled
simulations (red lines). b, Impact of changes in tropical temperature versus
impact of changes in atmospheric CO2 on tropical land carbon, for the C4MIP
models (black letters) and three variants of the HadCM3C model14 (red letters).
The horizontal lines represent the new constraint presented in this study.
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Figure 2 | Observed relationship between variations in the growth rate of
atmospheric CO2 and tropical temperature. a, Annual anomalies in CO2

growth rate (black) and tropical temperature (red) versus year. b, Sensitivity of
CO2 growth rate to tropical temperature, with numbers representing the
individual years in a and the dashed line showing the best-fit straight line, which
has a gradient of 5.1 6 0.9 GtC yr21 K21. The years in red were not included in
this fit because they directly followed major volcanic perturbations to the climate.
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ensemble members, which were produced by perturbing only para-
meters in the land carbon-cycle component of the model13, span an
even larger range (5.6–14.4 GtC yr21 K21), suggesting that uncertain-
ties in the modelling of the tropical land carbon cycle are critical.

Most importantly, these differing IAV sensitivities are strongly cor-
related (r 5 0.98, P 5 0.0005) with variations in cLT across C4MIP
models (black labels in Fig. 3a). The dashed red line in Fig. 3a shows
the best-fit straight line relating these variables for the six C4MIP
GCMs (although in principle a well-defined nonlinear function would
also yield an emergent constraint). The red labels in Fig. 3a show how
well this relationship would have predicted the variation in cLT for the
three HadCM3 ensemble members given the IAV sensitivity of each.
We note that two of the HadCM3 variants have cLT values beyond the
range of the C4MIP models, but that the extrapolated straight line is
nevertheless able to fit these outliers. The dotted vertical black lines in
Fig. 3a show the IAV sensitivity (61 s.d.), as previously estimated from
the contemporary observations, from which we derive tighter bounds
on cLT.

With the model-derived relationship between cLT and the IAV
sensitivity, we can use the observational constraint to estimate a proba-
bility density function (PDF) for cLT (Methods). Figure 3b compares
this with the PDF arising from assuming that all C4MIP models are
equally likely to be true and come from an underlying Gaussian dis-
tribution (red line). The emergent constraint from the IAV sensitivity
of the CO2 growth rate sharpens the PDF of cLT and moves its peak to a
less negative value (253 6 17 as opposed to 269 6 39 GtC K21). The
application of the IAV constraint reduces the estimated probability of
cLT values more negative than 2100 GtC K21, typically associated with
models that project CO2-induced tropical forest dieback, by almost
two orders of magnitude from 21% to 0.24%.

The IAV constraint also gives strong confirmation that tropical land
carbon is vulnerable to warming caused by non-CO2 forcing factors11.
Remaining uncertainties in tropical land climate–carbon-cycle feed-
backs are therefore the magnitude of long-term CO2 ferti-
lization effects in the tropics, and the extent to which future climate
change will be caused by non-CO2 factors.

METHODS SUMMARY
We used results from six of the eleven models used in C4MIP3. The five excluded
models consisted of four Earth-system models of intermediate complexity, which
do not typically generate internal variability as required to define the interannual
sensitivity of the CO2 growth rate to tropical temperature anomalies, and one
GCM (LLNL), which reported zonal mean land temperatures rather than zonal
mean (land and ocean) temperatures. Outputs from the remaining six models
were reported as annual means for each 30u latitudinal band (available at https://

c4mip.lsce.ipsl.fr/diagnostics_phase2.html). We combined the outputs from the
30uN–0u and 0u–30u S bands to define the projected changes for the 30uN–30u S
‘tropical’ band.

Models G, H and I in this study, which are used to test the emergent constraint
derived from the C4MIP models, come from a land carbon-cycle ensemble carried
out with the HadCM3C model14. HadCM3C is similar to C4MIP model A
(HadCM3LC) but includes a higher-resolution ocean model (1.25u3 1.25u rather
than 2.5u3 3.75u) and interactive atmospheric sulphur-cycle chemistry.
Seventeen HadCM3C ensemble members were defined by perturbations to key
land surface parameters including leaf nitrogen concentrations and the temper-
ature sensitivities of photosynthesis and soil respiration14. All ensemble members
were driven by the SRES A1B emissions scenarios, including changes in non-CO2

forcing factors (most notably changes in anthropogenic sulphate aerosols10).
Uncoupled simulations were carried out only for the standard parameter values
(HadCM3-st), and the ensemble members leading to the lowest (HadCM3-a) and
highest (HadCM3-h) global carbon-cycle feedbacks. We therefore focused on
these three variants of HadCM3C in this study.

The analysis of the model outputs and observational data, and the statistical
methods employed are outlined in Methods.

Full Methods and any associated references are available in the online version of
the paper.
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Figure 3 | Emergent constraint on the sensitivity of tropical land carbon to
climate change. a, Climate sensitivity of tropical land carbon (cLT) versus the
sensitivity of the CO2 growth rate to tropical temperature, for each of the
models shown in Table 1. The dashed line shows the best-fit straight line across
the C4MIP models (black). The red symbols represent a test of this relationship
against the three HadCM3C ensemble members. The dot–dash lines indicate
the constraint on the observed IAV in the CO2 growth rate derived from Fig. 2b.
b, PDF for the climate sensitivity of cLT. The black line was derived by applying
the IAV constraint to the across-model relationship shown in a. The red line
shows the ‘prior’ PDF that arises from assuming that all of the C4MIP models
are equally likely to be correct and that they come from a Gaussian distribution.
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of !20% and up to 50% at some stations. A similar
tendency to underestimate the observed amplitude was
found by Dargaville et al. [2002]. Strictly speaking, ampli-
tude differences of 20% (as inferred from smodel/sobs ratios)
are not statistically significant, according to the F-test
describe above.
[26] The poorest agreement between model and observa-

tions occurs at several stations in the !33!S–45!S latitude
belt (CGO, BHD, CPT, AMS), where the relative amplitude
of the seasonal cycle (smodel/sobs) is 3 or more. A sensitivity
study with only Northern Hemisphere land fluxes indicated
that local land and biomass burning sources in Australia and
South Africa are responsible for the large model amplitudes.
The discrepancies between model and observations could be
a sampling issue, since some of these stations only record
samples when the wind comes off the sea, despite our
attempts to address this issue by sampling the model at
the nearest windward ocean grid as per Gurney et al.
[2000].
[27] South of 45!S, agreement between model total CO2

and observations improves to some extent. Model and
observations are relatively well correlated (R ! 0.8 to
0.95), but the model amplitude is too large by a factor of

1.5 to nearly 3. The GFED land and WHOI ocean tracers
are generally in phase both with each other and with
observations. The amplitude of either alone tends to match
observations, but the combination of land and ocean over-
estimates the observed amplitude. A sensitivity study indi-
cated that most of the land contribution at these latitudes
comes from the northern hemisphere, consistent with past
work [Randerson et al., 1997]. The agreement of total CO2

computed with the Takahashi ocean tracer arguably agrees
better with observations than total CO2 computed with the
WHOI ocean tracer, since the former only overestimates the
observed amplitude at extratropical southern hemisphere
stations by a factor of !2 rather than 2.5–3 for the latter;
but this result could be caused by compensating errors in the
land tracer.
[28] The tendency of models to overestimate the ampli-

tude of total CO2 at extratropical southern stations has been
noted in previous comparisons at the South Pole station
[Randerson et al., 1997; Dargaville et al., 2002]. However,
some previous studies used earlier versions of the WHOI
ocean model or Takahashi et al. [2002] climatology, which
produced an oceanic seasonal cycle of smaller amplitude,
such that the resulting land-dominated CO2 cycle agreed

Figure 1. Seasonal cycles of atmospheric CO2 at six selected stations determined from mean harmonic
fit to 1997–2004 time series. Thin black line with triangles is GLOBALVIEW observed cycle. Blue
dashed line is WHOI best-case ocean, cyan dashed line is Takahashi ocean. Black dotted line is GFED
land, green dotted line is neutral biosphere, red dotted line is the best-case biomass burning component of
GFED. Magenta dot-dash line is fossil fuel. Solid heavy black line is best-case total CO2 (as defined in
Table 1). (a) Ocean Station, Norway (STM), (b) Lampedusa, Italy (LMP, (c) Mauna Loa, Hawaii (MLO),
(d) Samoa (SMO), (e) Cape Grim, Tasmania (CGO), and (f) Palmer Station, Antarctica (PSA).
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Atmospheric CO2 contains the imprint of many 
different fluxes, but terrestrial processes dominate 

seasonal and interannual variability 

Nevison et al., 2008
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Atmospheric CO2 annual cycle reflects both growing 
season uptake and net release of CO2

Graven et al.,  2013



Carbon cycle responds to multiple climate 
drivers across diverse regions
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We have constraints on ecosystem productivity 
over a range of spatial scales
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We analyze links between climate anomalies and SIF at 
interannual timescales with GOME-2 data
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We analyze links between climate anomalies and SIF at 
interannual timescales with GOME-2 data
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Figure 1 | Global distributions of the inferred apparent turnover time (⌧ ) of global soil organic matter as function of climatological temperature. a,b, ⌧ is
calculated as the ratio of carbon stocks (a) to net primary productivity (b). c, ⌧ plotted as function of mean annual air temperature (MAAT). Each gridcell is
coloured by climatological precipitation. d, As in c, but after filtering out gridcells that are likely to be dominated by either aridity (precipitation minus
potential evapotranspiration < threshold of �1,000 mm yr�1) or saturation (peatland fraction exceeds threshold of 50%). Best-fit regression curve in d
uses a quadratic regression of log (⌧ ) versus MAAT, with 50% prediction intervals shown.

in the sensitivity of inferred ⌧ to climatological temperature over
the interval, with stronger sensitivity in cold climates than in warm
climates. We note, however, that considerable variation remains.
The residual two-fold variation in turnover times (residual variance
in log(⌧ )=0.1; Supplementary Table 1) is also a real and important
feature of the data, and this may be driven by mineralogical or
other factors23,24 beyond the simple climate metrics used here. We
recognize that further research diagnosing the mechanisms respon-
sible for this variation is critical, but here we focus on the central
relationship between soil ⌧ and temperature that emerges from our
global analysis.

Taking the derivative of the central soil ⌧ to temperature
relationship (Fig. 1d), and placing this in terms of the exponential
form Q10, gives a ‘climatological Q10’ (Fig. 2), which decreases with
temperature, from Q10 > 5 in cold climates to Q10 = 1 (that is, no
temperature sensitivity) in hot climates. This climatological Q10
di�ers from the classical short-timescale Q10 in being diagnosed
from ⌧ , whereas short-timescale Q10 values are diagnosed based on
instantaneous decay rates, k (where, at steady state, k=1/⌧ ). Short-
timescale respiration observations show a widespread Q10-like
behaviour with a value in the region of approximately 1.4 based
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Figure 2 | Inferred ‘climatological Q10’ as a function of temperature.
Climatological Q10 is calculated from the derivative of the regression
relationship between ⌧ and MAAT in Fig. 1d. We define emergent domains
as those where the climatological Q10 di�ers appreciably from short-term
Q10 values (that is, Q10 >2 or Q10 < 1.4).
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the warm-domain MIMICS captured the lower temperature sensitiv-

ity (flat slope) of inferred turnover times, although the intercept may

be too high (Figure 4b). Finally, CORPSE showed a stronger than

observed temperature sensitivity in all cases (Figure 4c), with long

turnover times simulated by CORPSE in the cold-domain resulting in

large carbon stocks at high latitudes. Thus, despite similarities in the

overall soil C stocks represented by these models we find strong dif-

ferences in the spatial distribution and potential temperature sensi-

tivities among CASA, MIMICS, and CORPSE that may influence

projections of soil carbon change over the historical period.

3.2 | Transient response

By the end of the transient simulation period, global mean annual soil

temperature increased by 1.1°C and mean annual soil moisture (calcu-

lated as percent saturation) increased by 0.5%, relative to the initial

conditions (Figure 5a). Notably, high latitude soils showed the greatest

changes, generally becoming warmer and wetter (Figure S1c–d), with

higher wintertime soil temperatures increasing liquid water availability

for longer periods of time. By the start of the 21st century, GPP

increased by 19 Pg C/year (+16%); meanwhile NPP increased 7 Pg C/

year (+15%; Figure 5a; Figure S2b), and similar in magnitude to an

ensemble of CMIP5 Earth system models (Wieder, Cleveland, Smith, &

Todd-Brown, 2015). Higher plant productivity increased global vegeta-

tion carbon stocks simulated by CASA-CNP by 36 Pg C, whereas

coarse woody debris stocks declined by 0.7 Pg C.

Changes in productivity and climate drove a net accumulation of

soil carbon in CASA-CNP and MIMICS by the end of the simulation

(+18.1 and +24.1 Pg C, respectively), whereas CORPSE lost soil

(a) (b)

(c) (d)

F IGURE 2 Steady state soil carbon stocks (kg C/m2) simulated in the biogeochemical testbed for (a) CASA-CNP, 1,360 Pg C; (b) MIMICS,
1,420 Pg C; (c) CORPSE, 1,410 Pg C; and (d) the HWSD observations, 1,260 Pg C. All values represent the sum of litter, soil, and microbial
biomass carbon that are averaged over the initialization period (1901–1920; 0–100 cm depth for MIMICS, CORPSE, and HWSD). Note, that
MIMICS was previously calibrated against the HWSD and the quasi-logarithmic scale bar

F IGURE 3 Zonal mean of steady state soil carbon stocks (kg C/
m2) calculated for each latitude band for CASA-CNP (green line),
MIMICS (purple line) CORPSE (brown line), the HWSD observations
(solid black line !1 r, shaded area), and the NCSCD observations
(dashed black line) Note irregular spacing on the x-axis
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higher wintertime soil temperatures increasing liquid water availability

for longer periods of time. By the start of the 21st century, GPP

increased by 19 Pg C/year (+16%); meanwhile NPP increased 7 Pg C/

year (+15%; Figure 5a; Figure S2b), and similar in magnitude to an

ensemble of CMIP5 Earth system models (Wieder, Cleveland, Smith, &

Todd-Brown, 2015). Higher plant productivity increased global vegeta-

tion carbon stocks simulated by CASA-CNP by 36 Pg C, whereas

coarse woody debris stocks declined by 0.7 Pg C.

Changes in productivity and climate drove a net accumulation of
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estimates. Similarly, variation among models in transient simulations

reflects uncertainty related to the ultimate fate of new carbon that

enters terrestrial ecosystems. In first order models, like CASA-CNP,

variation in carbon inputs largely determines the variation in soil car-

bon changes, reflecting the linear relationship between inputs and

turnover times (Koven, Chambers, et al., 2015; Todd-Brown et al.,

2014). Accordingly, increased productivity in the transient simulation

increased soil carbon stocks in CASA-CNP, especially in colder cli-

mates with longer base turnover times (Figures 5c and 6a, Fig-

ure S5b). In the microbially explicit models, increased plant

productivity and litter inputs also build proportionally larger microbial

biomass pools (Figure S2c–d). These larger microbial biomass pools

can simultaneously accelerate the decomposition of organic matter

and build soil carbon stocks. The balance of these factors depends

on assumptions about the catalytic capacity of larger microbial bio-

mass pools vs. the potential fate of microbial residues.

Increased plant productivity over the 20th century increased the

rate at which microbial residues contributed to soil organic matter

pools. MIMICS assumes that finely textured soils have a much

greater capacity to stabilize microbial residues (Wieder, Grandy,

et al., 2014), accounting for the larger tropical soil C accumulation

(Figure 6b, Figure S5b). In contrast, larger microbial biomass pools

simulated by CORPSE (as well as increased root exudation) acceler-

ated the decomposition of unprotected soil organic matter and litter

stocks resulting in smaller increases in C stocks globally (Figures 5c

and 6c). The rapid turnover times simulated by CORPSE in temper-

ate and tropical ecosystems (Figure 4) suggest that little of the new

carbon will be retained in CORPSE simulations, an interpretation

supported by results from the isolated GPP simulation (Figure S5b).

Indeed, losses of soil carbon have been observed with increasing

plant productivity in high-latitude ecosystems (Hartley et al., 2012).

In temperate forests, multidecadal litter manipulation studies gener-

ally show modest carbon accumulation in organic soil horizons, but

no change in the carbon stocks of mineral soils (Bowden et al.,

2014; Lajtha, Bowden, & Nadelhoffer, 2014; Lajtha, Townsend,

et al., 2014). This suggests a more nuanced relationship between

plant productivity and soil carbon storage may be necessary to

understand and simulate likely terrestrial carbon responses to

changes in plant productivity. The models in the biogeochemical

testbed take a step in this direction, but our results highlight the

need to refine the representation of factors affecting microbial

access to otherwise decomposable substrates in soils.

4.2 | Temperature sensitivities

Uncertainties in observed soil biogeochemical responses to temper-

ature present notable challenges for projecting terrestrial carbon

dynamics in a warming world (Conant et al., 2011; Davidson &

Janssens, 2006; Jones, Cox, & Huntingford, 2003). Although theory

predicts that warmer temperatures should accelerate soil organic

matter decomposition and lead to soil carbon losses, experimental

evidence for these assumptions remains unclear (Bradford, Wieder,

et al., 2016). Recent syntheses, however, demonstrate that experi-

mental warming consistently increases soil respiration rates (Carey

et al., 2016) and leads to soil carbon losses in sites where initial

soil carbon stocks were large (Crowther et al., 2016). Models in the

testbed reflected these general expectations (Figure 5), but extend-

ing the insight provided from these relatively short-term experi-

mental findings to decadal- and centennial-scales increases the

uncertainty associated with societally relevant carbon cycle projec-

tions. Moreover, these syntheses cannot decompose the changes in

productivity vs. turnover times associated with warming; however,

they do corroborate field studies suggesting that warmer summer-

time temperature may be accelerating the decomposition of soil

organic matter in the Alaskan tundra and thereby turning Arctic

landscapes into a source of carbon dioxide to the atmosphere

(Commane et al., 2017; Schuur et al., 2009). Collectively, these

observations highlight the importance of capturing the appropriate

soil carbon temperature sensitivity for understanding potential car-

bon cycle – climate feedbacks, especially in carbon-rich, high lati-

tude ecosystems.

Differences in base decomposition rates and temperature sensi-

tivities largely describe differences in steady state and transient

(a)

(b)

F IGURE 8 Mean annual cycle of (a) soil temperature, soil
moisture and litter inputs (red, blue, and black lines, respectively) at
54°N over the last decade of the simulation (2001–2010). The lower
panel (b) shows heterotrophic respiration fluxes (solid lines) and
microbial biomass stocks (dashed lines) from CASA-CNP, MIMICS,
and CORPSE (green, purple, and brown lines, respectively) for the
same region and time period
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To further explore differences among models we looked at mean

annual cycles of heterotrophic respiration from the testbed (Fig-

ure 7). By design, at the beginning of the simulations litter inputs

equaled heterotrophic respiration rates for all models (48.1 Pg C/

year). A climatology of annual soil respiration rates averaged across

latitudinal bands, therefore, illustrates differences in the seasonal

cycle of carbon fluxes from each model. As each soil model in the

testbed was driven by a common climate and vegetation model, dif-

ferences among the left panels of Figure 7 reflect distinctions in the

seasonal amplitude of terrestrial net ecosystem exchange with the

atmosphere. Across midlatitudes in the northern hemisphere CASA-

CNP showed the lowest amplitude in seasonal CO2 fluxes (Fig-

ure 7a). Over this same region, MIMICS showed higher summertime

respiration than CASA-CNP, but both models simulated similar win-

tertime respiration rates (Figure 7c). By contrast, CORPSE had very

low midlatitude heterotrophic respiration fluxes in winter, but much

larger summertime rates—generating the highest amplitude seasonal

cycle of all the models (Figure 7e). The stronger seasonal cycle

shown by CORPSE is consistent with the high transient sensitivity to

freeze/thaw state by that model. These distinctions were amplified

over time (Figure 7, right panels), showing a global intensification of

heterotrophic CO2 fluxes between the first and last decades of the

simulation. By the end of the transient simulation annual CO2 fluxes

were no longer equal among models, however, as soil carbon losses

were greater for CORPSE, which simulated heterotrophic respiration

fluxes that were roughly 1 Pg C/year higher than CASA-CNP and

MIMICS. By the end of the transient simulations, we also note a

qualitative difference in the latitude-seasonal responses of HR

between CORPSE and the other models in the mid- to high- latitude

regions, where CORPSE tends to show respiratory increases earlier

in the season and more northerly than the baseline climatological

cycle, while the other two models tend to show increases that are

more closely aligned in seasonality and latitude with the baseline cli-

matology (Figure 7b,d,f).

To clarify differences among models we focused on fluxes from

a single latitudinal band (here 54˚N) over the last decade of the sim-

ulation. Figure 8 illustrates the seasonal cycle of environmental dri-

vers (temperature, soil moisture, and litter inputs), as well as the

annual evolution of heterotrophic respiration fluxes and microbial

biomass represented by each model. Again, CASA-CNP and MIMICS

produced similar wintertime fluxes. With warming in spring (and

greater availability of liquid water) heterotrophic respiration rates

quickly accelerated in all models, but this occurs sooner in the year

for both CASA-CNP and CORPSE (Figure 8). The annual respiration

rates simulated by CASA-CNP generally tracked soil temperature

changes, with maximum fluxes corresponding to periods with the

warmest soil temperatures. By contrast, the maximum respiration

rates simulated by the microbially explicit models were somewhat

lagged from the CASA-CNP fluxes—corresponding to periods when

litter inputs and temperature were also highest. Moreover, MIMICS

(a)

(b)

(c)

(d)

(e)

F IGURE 5 Globally averaged changes
in (a) environmental conditions: soil
temperature (°C), soil moisture (%
saturation), and plant litter inputs (red, blue
and black lines, respectively); and the
cumulative change (b) soil carbon stocks
simulated by: CASA-CNP, MIMICS, and
CORPSE (green, purple, and brown lines,
respectively) in the full transient
simulation. Isolated forcing experiments
showing changes in soil carbon stocks
following changes in only (c) GPP, (d) soil
temperature, and (e) soil moisture. For all
plots, annual values were weighted by land
area and differenced from initial conditions
averaged over the spin-up period
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are passed onto three different soil biochemical models that include

the CASA-CNP model that implicitly represents microbial activity

using a first-order decomposition approach, as well as two recently

developed microbially explicit models that include the MIcrobial-

MIneralization Carbon Stabilization model (MIMICS; Wieder, Grandy,

Kallenbach, & Bonan, 2014; Wieder, Grandy, Kallenbach, Taylor, &

Bonan, 2015) and the Carbon, Organisms, Rhizosphere, and Protec-

tion in the Soil Environment model (CORPSE; Sulman, Phillips, Oishi,

Shevliakova, & Pacala, 2014). For each model, we ran a spin up sim-

ulation to bring soil organic matter pools to steady state and then

conducted a transient simulation including changes in climate and

NPP over the historical period (1901–2010) to compare the stocks

and changes of soil C pools simulated by each soil model. Below we

summarize the data inputs, CASA-CNP vegetation model, the three

soil carbon models applied in the testbed, and the testbed configura-

tion. More detailed information can be found in the online user’s

manual and technical documentation that accompanies the publically

available model testbed code available at github.com/wwieder/bioge

ochem_testbed_1.0.

2.1 | Data inputs

Data inputs for the biogeochemical testbed can be modified from a

variety of sources, but for this study, data inputs were generated by

the CLM using a satellite phenology scheme forced with the CRU-

NCEP climate reanalysis (Koven et al., 2013; Oleson et al., 2013;

Figure 1). This standard configuration of CLM generated globally

gridded daily output of gross primary productivity (GPP), air temper-

ature, soil temperature, liquid soil moisture and frozen soil moisture

for the historical period (1901–2010). Soil texture inputs to the

testbed were depth-weighted means in the top 50 cm of soil from

the CLM surface data set (Oleson et al., 2013). The testbed assigned

a single plant functional type (PFT) to each 2° 9 2° grid cell, com-

puted as the mode from the 1-km International Geosphere–Bio-

sphere Program Data and Information System (IGBP DISCover) data

set with 18 vegetation types, including grassy tundra (Loveland

et al., 2000; National Center for Atmospheric Research Staff, 2017).

CASA-CNP defines biome-specific parameters corresponding to each

PFT (Table S1). Results presented here use output from the two-

degree version of CLM as input to the testbed, although the testbed

operates independent of resolution and can even be configured to

run for a single point or field site. Postprocessing of CLM history

files was required to format input data that could be read into the

testbed. Specifically, average soil temperature and liquid and frozen

soil moisture used by the testbed are depth-weighted means in the

rooting zone according to the PFT-specific root depth and root dis-

tribution (Table S1). Only liquid soil moisture was considered when

computing soil moisture limits on growth for the vegetation model

and decomposition in the CASA-CNP and CORPSE soil models.

CORPSE also required information on frozen soil moisture to calcu-

late air-filled pore space. MIMICS did not consider soil moisture

effects on decomposition.

2.2 | CASA-CNP vegetation model

The carbon-only version of the CASA-CNP terrestrial biosphere

model calculated daily net primary production (NPP) and subsequent

plant litter inputs to the soil. Daily NPP was calculated by subtract-

ing the sum of plant maintenance and growth respiration from the

CLM-derived GPP. Maintenance respiration in CASA-CNP was zero

for leaves, and calculated as a function of N content (g

C g N!1 day!1) for wood and fine roots (determined from fixed

biome-specific C:N ratios, Table S1). These respiration rates were

zero for air/soil temperatures ≤250 K and increased exponentially

F IGURE 1 Configuration of the biogeochemical testbed. Inputs required by the testbed include daily estimates of gross primary
productivity (GPP), air temperature, soil temperature, and soil moisture as well as static maps of soil properties and vegetation types. For the
simulations presented here these were generated by simulations from the Community Land Model forced with CRU-NCEP climate reanalyzes
for the period 1901–2010, but other input streams can be used in the testbed. From these inputs the CASA-CNP vegetation model calculates
daily NPP and litterfall fluxes, which are delivered to each of the soil biogeochemical models. Output from the testbed include daily and
annually averaged carbon stocks and fluxes for vegetation and soils
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Figure 2: Mean annual cycle of CO2 from individual flux components (CO2
NPP, CO2

HR) 
between 1982 and 2010 for six atmospheric sampling bands in the Northern Hemisphere (a-c) 
and Southern Hemisphere (d-f). Note the change in y-axis scale between the two hemispheres. 

stabilization of microbial residues and necromass (Grandy & Neff,

2008; Kallenbach, Frey, & Grandy, 2016; Liang, Cheng, Wixon, &

Balser, 2011). While the three models included in the testbed all rep-

resented this process, their implementations and assumptions dif-

fered substantially, reflecting important uncertainties in how to

appropriately represent pore-scale physicochemical stabilization

mechanisms in global-scale models. Our global loam experiment illus-

trated that steady-state soil carbon dynamics in CASA-CNP and

MIMICS showed a greater sensitivity to soil texture than CORPSE

(Figure S4). While the appropriateness of soil texture to describe

diverse stabilization mechanisms on mineral surfaces and within

aggregates is in itself debatable (Doetterl et al., 2015; Mikutta, Kle-

ber, Torn, & Jahn, 2006), texture still serves as a useful proxy for

which gridded input data sets are available for global-scale

simulations (Bailey et al., 2017). We also note that few of the ESMs

represented in the CMIP5 archive use any information about edaphic

properties (texture, mineralogy, or pH) in their soil biogeochemical

submodels.

Regional differences in initial soil carbon stocks highlight the

need to better resolve factors regulating physicochemical stabiliza-

tion of soil organic matter in models. For example, CASA-CNP and

CORPSE simulated lower than observed steady-state soil carbon

densities in warmer ecosystems (Figures 2 and 3). This suggests that

the physicochemical stabilization mechanisms implicitly represented

in these models may not be strong enough to counteract environ-

mental conditions that would otherwise favor rapid decomposition

(Figure 4). By contrast, MIMICS simulated higher soil carbon stocks

in warm regions that were more consistent with observation-based

(a) (b)

(c) (d)

(e) (f)

F IGURE 7 Hovm€oller diagram showing
the climatological mean daily respiration
rate (g C m!2 day!1) averaged over each
latitude band for the initialization period
(1901–1920; left column), and the
difference between the final (2001–2010)
and initial (1901–1920) mean daily
respiration rates (right column). Results
from each model are shown for (a, b)
CASA-CNP, (c, d) MIMICS, and (e, f)
CORPSE
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Figure 3: Mean annual cycle of CO2 from global net ecosystem productivity flux (CO2
NEP) 

between 1982 and 2010 for six atmospheric sampling bands in the Northern Hemisphere (a-c) 
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estimates. Similarly, variation among models in transient simulations

reflects uncertainty related to the ultimate fate of new carbon that

enters terrestrial ecosystems. In first order models, like CASA-CNP,

variation in carbon inputs largely determines the variation in soil car-

bon changes, reflecting the linear relationship between inputs and

turnover times (Koven, Chambers, et al., 2015; Todd-Brown et al.,

2014). Accordingly, increased productivity in the transient simulation

increased soil carbon stocks in CASA-CNP, especially in colder cli-

mates with longer base turnover times (Figures 5c and 6a, Fig-

ure S5b). In the microbially explicit models, increased plant

productivity and litter inputs also build proportionally larger microbial

biomass pools (Figure S2c–d). These larger microbial biomass pools

can simultaneously accelerate the decomposition of organic matter

and build soil carbon stocks. The balance of these factors depends

on assumptions about the catalytic capacity of larger microbial bio-

mass pools vs. the potential fate of microbial residues.

Increased plant productivity over the 20th century increased the

rate at which microbial residues contributed to soil organic matter

pools. MIMICS assumes that finely textured soils have a much

greater capacity to stabilize microbial residues (Wieder, Grandy,

et al., 2014), accounting for the larger tropical soil C accumulation

(Figure 6b, Figure S5b). In contrast, larger microbial biomass pools

simulated by CORPSE (as well as increased root exudation) acceler-

ated the decomposition of unprotected soil organic matter and litter

stocks resulting in smaller increases in C stocks globally (Figures 5c

and 6c). The rapid turnover times simulated by CORPSE in temper-

ate and tropical ecosystems (Figure 4) suggest that little of the new

carbon will be retained in CORPSE simulations, an interpretation

supported by results from the isolated GPP simulation (Figure S5b).

Indeed, losses of soil carbon have been observed with increasing

plant productivity in high-latitude ecosystems (Hartley et al., 2012).

In temperate forests, multidecadal litter manipulation studies gener-

ally show modest carbon accumulation in organic soil horizons, but

no change in the carbon stocks of mineral soils (Bowden et al.,

2014; Lajtha, Bowden, & Nadelhoffer, 2014; Lajtha, Townsend,

et al., 2014). This suggests a more nuanced relationship between

plant productivity and soil carbon storage may be necessary to

understand and simulate likely terrestrial carbon responses to

changes in plant productivity. The models in the biogeochemical

testbed take a step in this direction, but our results highlight the

need to refine the representation of factors affecting microbial

access to otherwise decomposable substrates in soils.

4.2 | Temperature sensitivities

Uncertainties in observed soil biogeochemical responses to temper-

ature present notable challenges for projecting terrestrial carbon

dynamics in a warming world (Conant et al., 2011; Davidson &

Janssens, 2006; Jones, Cox, & Huntingford, 2003). Although theory

predicts that warmer temperatures should accelerate soil organic

matter decomposition and lead to soil carbon losses, experimental

evidence for these assumptions remains unclear (Bradford, Wieder,

et al., 2016). Recent syntheses, however, demonstrate that experi-

mental warming consistently increases soil respiration rates (Carey

et al., 2016) and leads to soil carbon losses in sites where initial

soil carbon stocks were large (Crowther et al., 2016). Models in the

testbed reflected these general expectations (Figure 5), but extend-

ing the insight provided from these relatively short-term experi-

mental findings to decadal- and centennial-scales increases the

uncertainty associated with societally relevant carbon cycle projec-

tions. Moreover, these syntheses cannot decompose the changes in

productivity vs. turnover times associated with warming; however,

they do corroborate field studies suggesting that warmer summer-

time temperature may be accelerating the decomposition of soil

organic matter in the Alaskan tundra and thereby turning Arctic

landscapes into a source of carbon dioxide to the atmosphere

(Commane et al., 2017; Schuur et al., 2009). Collectively, these

observations highlight the importance of capturing the appropriate

soil carbon temperature sensitivity for understanding potential car-

bon cycle – climate feedbacks, especially in carbon-rich, high lati-

tude ecosystems.

Differences in base decomposition rates and temperature sensi-

tivities largely describe differences in steady state and transient

(a)

(b)

F IGURE 8 Mean annual cycle of (a) soil temperature, soil
moisture and litter inputs (red, blue, and black lines, respectively) at
54°N over the last decade of the simulation (2001–2010). The lower
panel (b) shows heterotrophic respiration fluxes (solid lines) and
microbial biomass stocks (dashed lines) from CASA-CNP, MIMICS,
and CORPSE (green, purple, and brown lines, respectively) for the
same region and time period
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Figure 4: Interannual variability of CO2 from global net ecosystem productivity (CO2
NEP 

IAV) for testbed models (colors) and MBL observations (black). High-latitude, mid-latitude and 
tropical land belts are shown for the Northern Hemisphere (a-c) and Southern Hemisphere (d-f).  
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Figure 5: Magnitude of CO2 interannual variability resulting from (a) global net ecosystem 
productivity (CO2

NEP IAV) and (b) individual flux components (CO2
NPP IAV, CO2

HR IAV). 
Statistics from observed CO2 are shown with black bars whereas colors represent simulated data.  
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Figure 6: Temperature sensitivity (γ) calculated for interannual variability (IAV) of CASA-
CNP air temperature and (a) flux IAV and corresponding CO2 IAV, (b) NEP IAV and CO2

NEP 
IAV.  

 

 

 

Figure 6: Temperature sensitivity (γ) calculated for interannual variability (IAV) of CASA-
CNP air temperature and (a) flux IAV and corresponding CO2 IAV, (b) NEP IAV and CO2

NEP 
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MIMICS’ temperature sensitivity is too high

Distribution of observing sites leads to 
overestimate of flux temperature sensitivity 
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Figure 7: Comparison of regional and global interannual variability (IAV) from land fluxes 
and resulting atmospheric CO2 between 1982 and 2010. (a, c) Normalized ratio taken between 
regional-global IAV magnitude. (b, d) Linear correlation between regional-global IAV. The 
scatterplot shows a direct comparison of ratio and correlation values for land flux values (x-axes) 
and corresponding CO2 (y-axes). Shapes denote the source regions for both land fluxes and CO2 
response.  
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Figure 7: Comparison of regional and global interannual variability (IAV) from land fluxes 
and resulting atmospheric CO2 between 1982 and 2010. (a, c) Normalized ratio taken between 
regional-global IAV magnitude. (b, d) Linear correlation between regional-global IAV. The 
scatterplot shows a direct comparison of ratio and correlation values for land flux values (x-axes) 
and corresponding CO2 (y-axes). Shapes denote the source regions for both land fluxes and CO2 
response.  
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the warm-domain MIMICS captured the lower temperature sensitiv-

ity (flat slope) of inferred turnover times, although the intercept may

be too high (Figure 4b). Finally, CORPSE showed a stronger than

observed temperature sensitivity in all cases (Figure 4c), with long

turnover times simulated by CORPSE in the cold-domain resulting in

large carbon stocks at high latitudes. Thus, despite similarities in the

overall soil C stocks represented by these models we find strong dif-

ferences in the spatial distribution and potential temperature sensi-

tivities among CASA, MIMICS, and CORPSE that may influence

projections of soil carbon change over the historical period.

3.2 | Transient response

By the end of the transient simulation period, global mean annual soil

temperature increased by 1.1°C and mean annual soil moisture (calcu-

lated as percent saturation) increased by 0.5%, relative to the initial

conditions (Figure 5a). Notably, high latitude soils showed the greatest

changes, generally becoming warmer and wetter (Figure S1c–d), with

higher wintertime soil temperatures increasing liquid water availability

for longer periods of time. By the start of the 21st century, GPP

increased by 19 Pg C/year (+16%); meanwhile NPP increased 7 Pg C/

year (+15%; Figure 5a; Figure S2b), and similar in magnitude to an

ensemble of CMIP5 Earth system models (Wieder, Cleveland, Smith, &

Todd-Brown, 2015). Higher plant productivity increased global vegeta-

tion carbon stocks simulated by CASA-CNP by 36 Pg C, whereas

coarse woody debris stocks declined by 0.7 Pg C.

Changes in productivity and climate drove a net accumulation of

soil carbon in CASA-CNP and MIMICS by the end of the simulation

(+18.1 and +24.1 Pg C, respectively), whereas CORPSE lost soil

(a) (b)

(c) (d)

F IGURE 2 Steady state soil carbon stocks (kg C/m2) simulated in the biogeochemical testbed for (a) CASA-CNP, 1,360 Pg C; (b) MIMICS,
1,420 Pg C; (c) CORPSE, 1,410 Pg C; and (d) the HWSD observations, 1,260 Pg C. All values represent the sum of litter, soil, and microbial
biomass carbon that are averaged over the initialization period (1901–1920; 0–100 cm depth for MIMICS, CORPSE, and HWSD). Note, that
MIMICS was previously calibrated against the HWSD and the quasi-logarithmic scale bar

F IGURE 3 Zonal mean of steady state soil carbon stocks (kg C/
m2) calculated for each latitude band for CASA-CNP (green line),
MIMICS (purple line) CORPSE (brown line), the HWSD observations
(solid black line !1 r, shaded area), and the NCSCD observations
(dashed black line) Note irregular spacing on the x-axis
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Figure 7: Comparison of regional and global interannual variability (IAV) from land fluxes 
and resulting atmospheric CO2 between 1982 and 2010. (a, c) Normalized ratio taken between 
regional-global IAV magnitude. (b, d) Linear correlation between regional-global IAV. The 
scatterplot shows a direct comparison of ratio and correlation values for land flux values (x-axes) 
and corresponding CO2 (y-axes). Shapes denote the source regions for both land fluxes and CO2 
response.  

 

Across three models, magnitude of IAV 
scales with stocks at high latitudes

 

Figure 7: Comparison of regional and global interannual variability (IAV) from land fluxes 
and resulting atmospheric CO2 between 1982 and 2010. (a, c) Normalized ratio taken between 
regional-global IAV magnitude. (b, d) Linear correlation between regional-global IAV. The 
scatterplot shows a direct comparison of ratio and correlation values for land flux values (x-axes) 
and corresponding CO2 (y-axes). Shapes denote the source regions for both land fluxes and CO2 
response.  

 

CORPSE

CASA
MIMICS

Wieder et al., 2018; Basile et al.,  in prep.



the warm-domain MIMICS captured the lower temperature sensitiv-

ity (flat slope) of inferred turnover times, although the intercept may

be too high (Figure 4b). Finally, CORPSE showed a stronger than

observed temperature sensitivity in all cases (Figure 4c), with long

turnover times simulated by CORPSE in the cold-domain resulting in
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higher wintertime soil temperatures increasing liquid water availability
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year (+15%; Figure 5a; Figure S2b), and similar in magnitude to an
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Figure 7: Comparison of regional and global interannual variability (IAV) from land fluxes 
and resulting atmospheric CO2 between 1982 and 2010. (a, c) Normalized ratio taken between 
regional-global IAV magnitude. (b, d) Linear correlation between regional-global IAV. The 
scatterplot shows a direct comparison of ratio and correlation values for land flux values (x-axes) 
and corresponding CO2 (y-axes). Shapes denote the source regions for both land fluxes and CO2 
response.  
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response.  
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High variability at 
high latitudes likely 
originates from the 
fact that HR is 
positively 
correlated with 
NPP and T, but 
NPP is strongly 
negatively 
correlated with T 
in the tropics, so 
these factors 
compete

Basile et al.,  in prep.



What can we evaluate?

These models overestimate the seasonal cycle of CO2 in NH.  Possible that 
seasonality of NPP is too large, and/or that seasonality in HR is too small.  The 
phasing of HR in MIMICS exacerbates this problem.

Magnitude of IAV is generally too large in NH, this issue is largest in the 
microbially explicit models.  MIMICS has too high IAV overall despite having 
similar magnitudes as other models for HR, suggesting phasing of HR relative to 
NPP is amplifying variability.

Temperature sensitivity of MIMICS is too large.



Challenges for model evaluation:

HR is not independent of NPP, so using CO2 to evaluate HR requires additional 
constraints on NPP (from satellite?).

Atmospheric transport can distort flux patterns (e.g., atmosphere has higher 
temperature sensitivity, atmosphere is relatively more sensitive to tropical 
fluxes).  

Diagnostics like the mean annual cycle amplitude are incredibly sensitive to 
phasing of model maximum and minimum 



Implications for carbon cycle science

Model results show that we can’t assume that HR simply follows patterns of 
NPP at seasonal or interannual timescales

Northern hemisphere contributes significantly to seasonal and interannual 
variability in HR, whereas paradigm is that CO2 IAV originates in the tropics


