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, CO2 Growth Rate Anomaly [Pg C y-1]

Terrestrial ecosystem fluxes are sensitive to
climate variations and are expected to have large
feedbacks to climate change
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CO2 (ppmv)

Atmospheric CO2 contains the imprint of many
different fluxes, but terrestrial processes dominate
seasonal and interannual variability
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Atmospheric CO; annual cycle reflects both growing
season uptake and net release of CO2

@ 1007

S Other Regions

Q@

>

O Sl Sep—-Apr
AN

3

O 50! May & Aug

)

-

'..C:> Jun & Jul

) I

3 25

=

-

@)

@)

BRW 500mb

Graven et al., 2013



Fractional Variance

Carbon cycle responds to multiple climate
drivers across diverse regions

1 A=062 A=066 A=0.66 A=0.66 A=0.76 A=0.59

[ Tropical Temperature

B Northern Hemisphere Temperature
B Tropical Drought

B Northern Hemisphere Drought

B Tropical Fire
B Northern Hemisphere Fire

0
60-90N 23-60N 0-23N 0-23S 23-60S 60-90S

Latitude

Keppel-Aleks et al., 2014



We have constraints on ecosystem productivity
over a range of spatial scales




We have approaches to benchmark soil stocks
at regional scales...
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... but observations of soil fluxes are limited to local scales



HR (g C m2day™")

Flux patterns will affect accumulation of soil carbon
over 2lst century

()

— 150

— 90

— 60

I
w
o

o

100 200 300
Day of year

Wieder et al.,, 2018

S

Microbial Biomass (g C

'

A Total C (Pg C)

[ )

ICASA-CNP
IMIMICS

]CORPSE
Siufhea

| T T T | T T T | T T T | T T
1920 1940 1960 1980 2000



Can we evaluate model predictions of
heterotrophic respiration using atmospheric CO2?

Ecosystem Drivers
CLM (daily CLM output)
History Files reformat GPP

Surface Data Set Air and soil temperature

Liquid and frozen soill
moisture
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Use testbed models to develop three plausible
representations of atmospheric CO2

CASA NPP +
Testbed HR Fluxes
as boundary
conditions
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Zonal CO- patterns
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Fluxes are tagged separately by region
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HR amplitude is essentially identical for CASA and
MIMICS, but total amplitude is 6 ppm larger in MIMICS
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Soil Temperature (°C)

HR (g C m?day™)
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Soil Temperature (°C)

HR (g C m?day™)
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For CORPSE and MIMICS,
seasonal maximum in HR
is shifted later, possibly due
to shift in peak microbial
biomass



Models generally capture patterns of interannual

variability
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Interannual CO2 Variability (ppm)
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MIMICS’ temperature sensitivity is too high

Distribution of observing sites leads to

overestimate of flux temperature sensitivity
(exacerbated for HR vs NPP)
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Variability in Southern Hemisphere
tropical NPP flux is about 60% of

e ————— variability in global NPP flux
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Variability in Southern Hemisphere
tropical NPP flux is about 60% of

variability in global NPP flux
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Variability in Southern Hemisphere
tropical NPP flux is about 60% of
variability in global NPP flux

Likewise, CO2 that contains only the
imprint of SH tropical fluxes is about
60% as variable as CO?2 that reflects
global fluxes

SH tropical fluxes are slightly more
variable than NH tropical and
midlatitude fluxes...

... but atmospheric circulation damps
the apparent variability in these other
latitude bands
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Atmospheric transport also magnifies
the correlation of the Southern
Hemisphere flux signal with the global
flux signal
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The influence of
NH midlatitude
fluxes is also most
coherent with
global signal

Basile et al., in prep.



01 1 2 3 5 10 20 30 50 10l
kgCm™

Across three models, magnitude of AV
scales with stocks at high latitudes

Wieder et al., 2018; Basile et al., in prep.
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High variability at
high latitudes likely
originates from the
fact that HR is
positively
correlated with
NPP and T, but
NPP is strongly
negatively
correlated with T
in the tropics, so
these factors
compete
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What can we evaluate?

These models overestimate the seasonal cycle of CO2 in NH. Possible that
seasonality of NPP is too large, and/or that seasonality in HR is too small. The
phasing of HR in MIMICS exacerbates this problem.

Magnitude of AV is generally too large in NH, this issue is largest in the
microbially explicit models. MIMICS has too high IAV overall despite having
similar magnitudes as other models for HR, suggesting phasing of HR relative to
NPP is amplifying variability.

Temperature sensitivity of MIMICS is too large.



Challenges for model evaluation:

HR is not independent of NPP, so using CO2 to evaluate HR requires additional
constraints on NPP (from satellite?).

Atmospheric transport can distort flux patterns (e.g., atmosphere has higher
temperature sensitivity, atmosphere is relatively more sensitive to tropical
fluxes).

Diagnostics like the mean annual cycle amplitude are incredibly sensitive to
phasing of model maximum and minimum



Implications for carbon cycle science

Model results show that we can’t assume that HR simply follows patterns of
NPP at seasonal or interannual timescales

Northern hemisphere contributes significantly to seasonal and interannual
variability in HR, whereas paradigm is that CO2 IAV originates in the tropics



