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Do we expect an effect of CO, on photosynthesis?
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Image credit: Victor Leschyk
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Expected effect of CO, on the carbon cycle
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Expected effect of CO, on the carbon cycle
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Expected effect of CO, on the carbon cycle

CO, nutrient & temp.

.. LUE dependent pathway
%‘
\ I Photosynthesis
|nd|rect
I Co, (fAPAR)

I Respiration

\ IWUE 4’

L r Aridity & nutrient
i dependent pathway




Expected effect of CO, on the carbon cycle

CO, nutrient & temp.

.. LUE dependent pathway
%‘
\ I Photosynthesis
|nd|rect
I Co, (fAPAR)

I Respiration

\ IWUE 4’

L r Aridity & nutrient
i dependent pathway




CO, Fertilization magnitude?
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TRENDY DGVMs 002 only

TRENDY DGVMs Climate only
= PR model fAPAR only
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* CO, markedly increasing the net
sink, photosynthesis and
respiration.

o

Global A NEP (PgC yr™)
o

* Vegetation greening a distant
second.

Global A GPP (PgC yr'")

* Warming increased both GPP and
Respiration.

* No evidence for an increase in
global water stress.
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CO, and light use efficiency

Big difference between satellite and
DGVM estimated effect of CO, on

photosynthesis B = 3(GPP)/d(Ca),
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CO, and light use efficiency

Big difference between satellite and
DGVM estimated effect of CO, on

photosynthesis
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Current approaches assume CO2 only effects fAPAR
e.g., MOD17:

GPP = u * fAPAR * PAR * f(T) * f(VPD)

But this only reflects the indirect effect of CO,,

and the direct effect is much larger.




CO, and light use efficiency

Incorporating CO, effects in satellite based estimates

LETTERS

DOI: 10.1038/541477-017-0006-8

Towards a universal model for carbon dioxide
uptake by plants

Han Wang ®'23* |, Colin Prentice?*, Trevor F. Keenan®2>, Tyler W. Davis*¢, lan J. Wright©®?,
William K. Cornwell’, Bradley J. Evans?® and Changhui Peng ®'°*

- e s
® Boreal forest/Tundra
Wa n g et a I 2 O 1 7 Temperate grassland/Shrubland
* ® Temperate woodland
- ® Desert

Wetland
e Alpine

r=0.5102
RMSE = 0.0786




Satellite GPP estimates predict low sensitivity of global

GPP to CO2 (capturing mostly the greening effect)
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But DGVMs suggest the sensitivity should be higher

TRENDY models
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The sensitivity of RuBisCO to CO?2 is relatively large

Theory

(pure direct
effect)
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Adding RuBisCO sensitivity to remote sensing GPP
estimates brings them roughly into line with DGVMs

TRENDY model ensemble

= = Machine Learning (only A fAPAR)
——MODIS (only A fAPAR)

—-—-Theory (only A LUE)

= = Machine Learning (A LUE + A fAPAR)
——MODIS (A LUE + A fAPAR)

Indirect
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CO, and light use efficiency
General convergence in satellite and DGVM sensitivity
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CO, and light use efficiency
General convergence in satellite and DGVM sensitivity

TBMs
RS with CO,,

RS without CO,,
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But what are we
converging to?




CO, and light use efficiency

There is a lack of reliable observational constraints

LETTER

doi:10.1038/nature19772

Projected land photosynthesis constrained by
changes in the seasonal cycle of atmospheric CO,

Sabrina Wenzel', Peter M. Cox?, Veronika Eyring' & Pierre Friedlingstein® 2 O 1 6

Enhanced Seasonal Exchange of CO-
by Northern Ecosystems Since 1960

H.D. Graven ™R, F. Keelma P er,'P. K. Patra B. B.
Ste hens S. C. Wofs W Sweeneyj’ Tan§
Kelley,® B. Daube Kort W. Santoni,*J. D. Bent

LETTER

doi:10.1038/nature22030

Large historical growth in global terrestrial gross
primary production 2017

J. E. Campbell!, J. A. Berry?, U. Seibt?, S. I. Smith*, S. A. Montzka®, T. Launois®t, S. Belviso®, L. Bopp®f & M. Laine”
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Emergent constraints?




Emergent constraint 0,

o“ :
d&
cse\"”“
.. v‘“
\0\9

o

UE
c ol
© >
4 S
C g
T o
&
)

®
Observations

(Observable)
Predictor




fAPAR

UE
c 2|
© >
4 S
C g
T o
&
)

Observations

(Observable)

Predictor
Greenness




Requirements

m A plausible physical mechanism
m Theory - led (i.e. a hypothesis-driven approach to testing)

m Avoid fishing expeditions and implicit assumptions about space
for time extrapolations

“Emergent constraints will therefore remain conditional on the model
ensembles used to define them and will be subject to systematic biases
in the model ensemble. Most obviously, if an important process is
neglected in all models (e.g. nutrient limitations on CO2 fertilization, or
the impacts of forest fires on the interannual variability of CO2), this has
the potential to lead to spurious emergent constraints on the real Earth
System.” Cox et al. 2019




Emergent constraints?

Could the magnitude of the land sink be related to the
CO, fertilization effect on photosynthesis?




Sort of...
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Sort of...

TBM prior
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Sort of...
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But this is the univariate relationship. What about the partial
relationship between RSP and S x\p?




Between-model differences in S, ,\p predicted via a

linear model
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Improved confidence in global photosynthesis responses
to CO2?
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But....

m Uncertainties remain:
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but represents a realization from a random normal
distribution




But....

m Uncertainties remain:

e GCP Sland uncertainty is .....
e Could be systematic biases across models
e What about climate change and climate sensitivities?

e Implicit assumption that each model Bz is equally likely
but represents a realization from a random normal
distribution

e Ultimately a global constraint provides limited inference for
regional dynamics, which could compensate each other




Take home messages:

1. Despite uncertainty regarding the magnitude and pathway,
elevated CO, is stimulating increased plant C uptake

2. CO, is also stimulating increased C release from ecosystems
3. The net effect is a large increase in terrestrial C uptake

4. The balance of direct and indirect pathways, and the sensitivity of each
to CO, remain poorly characterized.

Implications:

1. We need to understand the relative contribution of each of dLUE and OWUE
in order to project when the sink will saturate

2. Previous results using long-term trends in GPP or NPP from remote
sensing/machine learning may need to be re-evaluated
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