Dissolved Organic Carbon In Arctic Rivers : Reduced Model with Functional Groups

Amadini M Jayasinghe New Mexico Tech, LANL 6-19-2020

Arctic Ocean

- Arctic Ocean, strong seasons
- Arctic Ocean, climate sensitive area

• Sea ice, albedo

Arctic Permafrost

Arctic permafrost is thawing and that affects biogeochemistry esp. C cycle.

As the frozen ground warms much faster than expected, it's reshaping the landscape—e.g. releasing carbon gases that fuel global warming.

Arctic Rivers

Arctic rivers constitute:

- A large source of DOC to Arctic Ocean
- Major inputs: Yenisey, Lena, Ob, etc.

DOC can influence physics in coastal plumes:

- Light penetration
- Mineral discharge and turbidity
- Surface activity
- Ligands
- Block brine channels, antifreeze?

(Dittmar & Kattner, 2003)

River Organics

Subdivide organic matter into macromolecular classes

- Proteins and derivatives
- Lipids and lignin
- Carbohydrates and derivatives
- Colored materials
- Heteropolycondensates (humics)

5

Portraits of organic molecules: structures

Heteropolycondensates(Humics)

Colored materials

Carbohydrates and derivatives

River Organics.....

Macromolecular classes influence coastal physical properties

- Absorption and light attenuation
- Primary production is reduced
- Surface activity -wind stress , mass/energy transfer, POA
- We also consider blocking colloids, protein antifreeze

(S Elliott et al., 2014; Scott Elliott et al., 2019; Krembs et al., 2011; Mungall et al., 2017; Stedmon et al., 2011)

Method

We model an idealized Arctic river, accounting for the evolution of biogeochemically active forms

Our idealized arctic river (nominally the Lena...)

Pre-processes

 With the boreal soil, with special attention to the differences between the major subecologies of tundra/taiga/woodland/peatland/mountains.

Floodplain

- Inserted mixing parameterization for a "node" -a location at which tributaries feed together.
- A dilution algorithm applied at this point as a placeholder for real channel simulation.
- Along the course, factored in the possibilities of bacterial degradation and photochemistry

Post-processing

• Simple representation of delta post-hoc to act as a counterpoint to soil initialization

Idealized arctic river model

Our idealized Arctic river: trajectory

Idealized arctic river chemistry boxes follow Lagrangian trajectories

Our idealized Arctic river: parameters

Preprocesses

- *Initial concentration*, based on the soil water composition of sub-ecological systems
- <u>*Turnover rates</u>*, coastal marine lifetimes with sensitivity tests</u>
- <u>Transport velocity</u>, simple representation of soil preprocessing

Floodplain

- *Node*, representing the linkage of tributaries
- **Dilution factor,** applies where there is channel mixing
- **<u>Chemical kinetics</u>**, bacterial and photochemical degradation time constants
- <u>Chemical mechanism</u>, decay of major biomolecular class molecules into small molecules
- *<u>Chemical mechanism</u>*, but include recombination toward heterogenous polymers
- <u>*Transport velocity*</u>, numerical values represent kinetics of the reaction vessel

Deltaic processes

<u>Transport velocity</u>, simple delta post-processing to act as counterpoint to soil initialization

Idealized arctic river model

Solutions : QSSA

 As Lagrangian integrations proceed, the functionally resolved species are treated as independent over any one time step in an exponential-form Euler, embodied by the Quasi-Steady State Approximation or QSSA

$$\frac{dC_i}{dt_{QSSA}} = P_i(C_j, C_k, \dots) - L_i(C_j, C_k, \dots)C_i$$
(1)

$$C_{i,t+\delta t} = \frac{P_i}{L_i} \left(1 - e^{-L_i \delta t} \right) + C_{i,t} e^{-L_i \delta t}$$
(2)

 $P_i, L_i fixed for \delta t$

- C_i are concentrations for some biomacromolecule of interest while
- C_{i(k)} are those of others in the table (lying elsewhere in the kinetic network),
- P and L represent the production term and loss constant respectively

- Primary taiga flow
- Primary tundra flow
- Taiga river network with tundra: one node
- Tundra river network with taiga: one node

Idealized 3000 km river, more detail:

- Mountain, woodland/peat, taiga/tundra
- River networks: two nodes
- Fast/slow kinetics within network
- Low/high initial concentrations

Schematic Mechanism...

Results: Idealized Arctic Single Link...

Closer to measurements: tundra + taiga one node

Results: Idealized Arctic double connect... Idealized 3000km river only

3000 km

- Mountain, woodland/peat, taiga/tundra
- River networks: two nodes
- Fast/slow kinetics within network
- Low/high concentrations

DOC **Reference** value Upper Lower /micromolar /micromolar /micromolar 100 300 100-300 Shogren et Primary al.,2019 Node 01 1000 3000 500-6000 Frey and McClelland., 2009 Node_02 100 - 1000Shogren et 300 1000al.,2019 14

Results: Idealized arctic river model...

Idealized 3000 km double node

Results: Idealized Arctic river model...

Idealized 3000 km species on broad, log scale

Results: Idealized Arctic river model...

Idealized 3000 km double tributary

- Dilution, CDOM and more - tool for examine the distribution
 - salinity and DOC relationship
- Statistics

$$RMS = \sqrt{\frac{\sum_{i=1}^{N} (x_{i,model} - x_{i,ref})^2}{N}}$$
(3)

Model run	RMS	Group	Average	Standard
				deviation
ast_low	370	TDOC	550	250
ast_upper	280	Proteins	11.5	3.5
low_low	180	Carbohydrates	25.2	10.6
low_upper	890	CDOM	8.6 (1/m)	4.17(1/m)

Results: Other facts

Major Bio macromolecular and Tracer Groups

- Biomarker phenols (lower left image)
- V-phenol -present in high altitude litter
 -react either photochemically or microbially
- S-phenol -form enters the main flow only later -tundra marker

• Aqueous Volatile Organics

- Biopolymers and macromolecules- can operate as the intra- or extracellular source for organic gases (isoprene)
- Organic gases trapped in soil are volatile, equilibration of the aqueous medium comprised by the river is rapid.
- Ventilation into pristine air masses and equilibration with forest haze plumes were both shown to be extremely rapid.
- Similar –mountain, high solute and tundra

Conclusion

- Relatively slow transformation rates along the water course.
- Channel combinations and mixing play the dominant role.
- Microbial and photochemical losses help determine final coastal concentrations for most species.
- Chemical evolution is distinct for the various functionalities tracked, with special contributions from pre- and post reactivity in soil waters and the delta.
- Portions of several organic groups are combined to represent the collective colored or chromophoric dissolved organic matter, characterized by its absorption properties.
- Outlet concentrations of individual species such as protein and adsorbers lie well above threshold values for biophysical influence on adsorption

Future Work

- From idealized river to true major systems: Lena , multimode system
- Particles to study interactions with condensed organics and minerals –flocculation
- Size distribution will include minerals

Thank you