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Introduction

Biosphere
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Large intermodel spread, large interannual variability
Participate to the definition of [CO,]=f(emission flux)
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Introduction

Biosphere
Largely defines continental water cycle response
(as it modulates evapotranspiration ET) (Lemordant et al., 2018)
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Addressing those challenges

How can we tackle those issues
to better constrain those predictions?

Approach:
Multiscale modeling/observations
Combined with physical and statistical (when needed) modeling

Why now?
Golden age for Earth Observations (e.g. satellites)
+
Dramatic increase in computational power
(many processes can how be resolved)
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Biosphere: photosynthesis

Largest terrestrial CO, flux: photosynthesis (GPP)
How can we constrain it to inform global env. changes?

¢ DBFN: r'=0.99; B=0.04
¢ DBES: r=0.98; B=0.05
=().96; B=0.07

We now have a proxy for photosynthesis, SBFN; £-0.96; B=0.7
called solar-induced fluorescence (SIF) N

97; B=0.06
).94: B=0.05

During photosynthesis a plant absorbs energy
through its chlorophyll

o % used for ecosystem gross
primary production (GPP)

o % lost as heat
o % re-emitted (SIF: byproduct)

¢ SVN: r=0.98; B=0.05
¢ SVS: r=0.99;: B=0.06
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Small flux of a small flux: a very small and noisy flux 5 4 6
GPP (gC/m’/d)

Photosynthesis
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Biosphere: photosynthesis

Example of success with SIF

Better characterization of phenological cycle NDVI exaggerates seasonal cycle

(a) Eurasia deciduous forest (b) Eurasia evergreen forest

MPI-GPP
MODIS-GPP
GOSAT-SIF
GOME-SIF
MODIS-NDVI
GIMMS-NDVI

Normalized GPP, SIF, and NDVI
Normalized GPP, SIF, and NDVI
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Biosphere: photosynthesis

SIF is too noisy, not long enough or not sufficient resolution
Use machine learning:
Reproduce SIF with MODIS (visible and near infrared channels):
higher accuracy and resolution, longer (2002-now)
Called Contiguous SIF (CSIF)

Contiguous
Solar-induced fluorescence
(CSIF)

MODIS
channels

Validation

Cost function:
misfit to SIF
observations
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Biosphere: photosynthesis

What is the rational behind this?
Let us go back to the basics (light use efficiency a la Monteith)
GPP = LUE¢.fPAR:,.PAR
Similarly
SIF =Yield.fPAR.,.PAR

Incoming PAR

C Reflected and
anopy transmitted PAR

Absorbed PARby Canopy (APAR

canopy)

Non-photosynthetic
vegetation (NPV)

Absorbed PAR by 1orophyll (APAR,,)

SIF
Electro

Heat (NPQ)

ansport (PQ) Light reactions

Photorespiration Dark reactions
alternative pathways

So SIF =VYield/ LUE, . GPP
If Yield, LUEy are not varying much then
APARc;, = fPAR-,.PAR is a good proxy for GPP (and SIF)
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Nile example

Original SIF (GOME-2) - 0.5 degree
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Nile example

Contiguous SIF Modis - 0.5 degree
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Nile example

Contiguous SIF Modis - 0.05 degree
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Application 1. Northern latitude temperature sensitivity

Use Contiguous SIF to understand sensitivity to warming
T+ = greener vegetation

—— Greenness

— Future Greenness

— Photosynthesis
—— Future Photosynthesis |/
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Application 1. Northern latitude temperature sensitivity

Use Contiguous SIF to understand sensitivity to warming
T+ = greener vegetation

—— Greenness

— Future Greenness

— Photosynthesis
—— Future Photosynthesis |/

Increased sink Increased source
(photosynthesis>respiration) (photosynthesis<respiration)
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Application 1. Northern latitude temperature sensitivity

Contiguous SIF: comparison with eddy covariances
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photosynthesis Ay
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Eddy-covariance /n situ observations
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Application 1. Northern latitude temperature sensitivity

Contiguous SIF: Start and End of season light limitation
Day of photosynthesis gain per increased day of greening

d(Photosynthesis days)

d(Greening days) Te0s HONX
o light NG ot of light
no ligt “ limitation
I|m|ta’_t|on (no benefits
(benefits of of being
being greener)
greener)

0 J§ Radiation limitation (%)
[ [ ]
0.8 1.0 Sensitivity (dd")

Greening: beneficial for beginning of season
not much benefits for end of season (light limitations)
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Application 1. Northern latitude temperature sensitivity

Validation: /n situ eddy-covariance Net Ecosystem Exchange (NEE)

NEE = -(Photosynthesis - Respiration) <O = Sink
=ON)
- lots of light
SOS Source ‘ . limitation
no light - ‘ (no benefits of
T — - =~ Deing greener,
kl)lmlt?c’.tlonf E é § increased CO,
(benefits o 5 o wo =l source with
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Temperature beneficial for beginning of season
not much benefits for end of season (light) but large spatial variations
Models do not capture this
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Application 2. End of season water stress

End of photosynthesis (EOP) date:
dependence on pre-season T (Reanalysis) and Soil moisture (SMAP)

Correlation (EOP, T) Correlation (EOP, P)
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Regions not T limited are water limited
Clear separation between them using Support Vector Machine classification
Confirmed by eddy covariances (not shown)
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Application 2. End of season water stress

Interannual Variability (IAV) still dominates the signal

Trend in CSIF IAV in CSIF
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Transformed limitation Transformed limitation

Limitation

Trend is still too weak compared to trend in MODIS record
Turn to Earth System Models that relatively correctly capture this threshold
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Application 2. End of season water stress

Future prediction of regions with EOP limited by precipitation
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no limitation

Change dominated
by warming
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Conclusions

Machine learning applied to remote sensing
as a "filter” for noisy but good data

Two examples of end of season impact on carbon uptake:

1. Light limitation
Machine-learning retrievals of photosynthesis provide new observational
constraints on GPP response across climates/ecosystems
« Cold regions: Light is the main regulator of end-of-season
photosynthesis and carbon uptake temperature sensitivity

2. Dryness change
Clear threshold dependent on both Tand P
Supply vs. demand
Demand T change is expected to have more future impact than P
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Next steps

Not just correlations, we want to assess causation,
predict (e.g. climate change) and interpret
1) Causation: need to decompose cause and consequence,

l.e. directionality and strength
Case i

Bidirectional coupling

Case ii:
Unidirectional coupling

Example 1:
External forcing of

non-coupled variables
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Complexmodel \ W_ # |
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2) Prediction: implies good out-of-sample generalization
(beside basic overfitting avoidance)

3) Interpretability (black boxes)
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THANK YOU

Questions?
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