Scale Dependence of Land-Atmosphere Interactions in CESM

Scott Denning, Ian Baker, Morgan Phillips, Sarah Gallup Colorado State University

Even Worse in CMIP5!

- More processes (land use, regrowth, nitrogen, fire)
- Now more than 350 ppm spread in CO₂!
- For identical emissions, radiative forcing varies by almost 2 W m⁻² (more than RCP 4.5 vs RCP 6)
- Warming varies by 1.5 °C (comparable to spread in physical climate)
- Carbon cycle impacts climate uncertainty as much as clouds or people!

Change in annual precipitation predicted during the 21st century

-1.33 -1.00 -0.67 -0.33 0.00 0.33 0.67 1.00 1.33 1.67 2.00 mm/day

Amazon Gradient

Figure 12: Field study sites across a continental-scale climate gradient as discussed in the text

Drought Stress constrained using OCO SIF

NW Amazon

SE Amazon

Maximum correlation confidence interval for inclusion: 0.34

Drought Stress constrained using OCO SIF

- Weak correlation in Central Amazon
- Strong correlation
 over periphery

Drought Stress constrained using OCO SIF

Scaling in Space & Time

Comparing models to obs is hard

- Earth System Models are supposed to use mechanisms derived locally to estimate emergent changes at much larger scale
- Lab and field data from chloroplasts to cuvettes to eddy covariance get extrapolated to climate model grid cells
- An emphasis on "carbon weather" in the observations, but critical questions are about "carbon climate" in the models
- Sampling vs averaging
- Seeing the forest for the trees

BAD NEWS:

About 100x more arithmetic than standard CESM!

Nonlinear Plants

Light Response

Drought Response

 $f(\overline{x}) \neq f(x)$

Single Column Model

- Land-atmosphere coupling using three configurations (SASS, MASS, MAMS)
- SiB-SCM (one column) vs SiB-SAM (64 columns)
- Soundings of T, q, wind relaxed to NCEP reanalysis on 6 hr timescale
- Local convection, precip, radiation, physiology, soil moisture, hydrology
- Three years 2001-2003 repeated

SCM: Drizzle vs Downpours

Monthly precipitation (top), standard deviation during hours with precipitation (middle), fraction of time when precipitation occurs (bottom) for the 3 models, and as observed. All 3 experiments reproduce observed precipitation (constrained by LBC)

- Constant drizzle in SASS
- Still too much drizzle in MASS & MAMS

SCM: Surface Fluxes

Obs almost aseasonal

Global Multiscale Climate Simulations with SP-CESM

- AMIP-style integrations of SP-CESM, with prescribed SSTs (27 years: 1979-2006)
- Coupled three ways: SASS, MASS, & MAMS
- MAML run uses 32 instances of CLM with identical parameters in each CAM column, each coupled to its own CRM column
- Hourly CRM diagnostics for 1 year

Nonlinear Fluxes

Hypothetical Wind Speeds over the Tropical Pacific

Total Precip. (mm/day)

MAMS-GPCP Global Avg. 0.002

MASS-GPCP Global Avg. -0.002

SASS-GPCP Global Avg. 0.004

Precipitation Evaluation

- Shift in western Pacific from Equator to off-Equator in SP-CAM
- Dramatic drying of Amazon!
- Indian Monsoon is much more realistic in finecoupled run (MAMS)

Site Precip Evaluation

- Tower site (K34) near Manaus in Central Amazon
- SASS has most realistic total precipitation by far
- SASS has drizzle 95% of the time vs actual rainfall about 10% of time in obs
- Multiscale runs are intermediate btwn control and obs

Walker Circulation

MASS-SASS (mm/day)- Global Avg. -0.002

MAMS-MASS (mm/day)- Global Avg. 0.003

-4.0 -2.0 0.0 2.0 4.0

- MASS (SP-CAM) produces a much drier Amazon
- MAMS produces a much more realistic Indian Monsoon

Fine-scale coupling produces much more throughfall and less canopy evaporation due to more intense precipitation

More Intense Rainfall

More Intense Rainfall

"Dynamical Downscaling"

More Intense Rainfall

Madrid

Miami

"Dynamical Downscaling"

30-Year Max Rainfall

- SASL < MASL < MAML
- Average precip not very different
- Extreme precip is <mark>much greater</mark> (& more realistic)

Photosynthesis (gC/m² day)

MAMS-SASS Global Avg. -0.258

MASS-SASS Global Avg. -0.091

MAMS-MASS Global Avg. -0.167

- Reduction in GPP in MASS vs SASS due to reduction in precip overall
- Shift in precip from Amazon to savanna in MAMS vs MASS correlated with changes in radiation distribution

Light & Water Limits

Light Response Curves

- Hourly GPP vs SW a ARM-SGP-atn ph CLM scales; colors s for hours BTRAN (stress)
- Mid-day samples at k tower (Manaus) for v season (3/2003) vs d season (9/2003)
- Fine-scale coupling produces more light limitation due t > covariance of b light : dry conditions

8

6

Radiation Variability

Standar Dev. of solar rad

for hours 10-14, 3, 2003 MAMS W/m^2- Global Avg. 160

Standar Dev. of solar rad

MASS W/m^2- Global Avg. 133

MASS W/m^2- Global Avg. 116

Standar Dev. of solar rad

MASS W/m^2- Global Avg. 126

SASS W/m^2- Global Avg. 125

SASS W/m^2- Global Avg. 127

SASS W/m^2- Global Avg. 116

0 50 100 150 200 250 300 350 400

0 50 100 150 200 250 300 350 400

^{50 100 150 200 250 300 350 400} 0

Summary

- Responses to changes in Amazon drought are among the most uncertain carbonclimate feedbacks for 21st Century
- GCM diagnostic: Seasonal drought strongly correlates with SIF
- Cloud-scale vs CAM-scale coupling:
 - > Much more realistic precip intensity
 - Water storage wet-to-dry season!
 - Shift in Walker Circulation drought!
 - Covariation between water & light limitation (reduced GPP)