
1

Scale Dependence of 
Land-Atmosphere 

Interactions in CESM

Scott Denning, 
Ian Baker, Morgan Phillips, Sarah Gallup

Colorado State University



• Coupled simulations of climate and 
the carbon cycle (CMIP3, C4MIP)

• Given nearly identical human 
emissions, different models project 
dramatically different futures!

• Mostly depends on CO2 fert & temp
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Even Worse in CMIP5 !

Hoffman et al (2014)

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381

Projections for Individual CMIP5 Models
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Figure 8. (a) and (c) CO2-induced radiative forcing and temperature change computed from the prognostic atmospheric CO2 mole fraction for each of the CMIP5 models. (b) and (d)
Corresponding radiative forcing and temperature change for the multimodel mean and contemporary CO2 tuned model (CCTM). The pink range surrounding the CCTM represents
the uncertainty propagated from the 95% confidence interval from the linear model for the CCTM atmospheric CO2 trajectory. The blue range surrounding the multimodel mean
represents the uncertainty propagated from the 95th percentile of the range for the standard deviation of the multimodel mean atmospheric CO2 trajectory.

structure and large-scale circulation have the potential to limit CO2 uptake by the oceans and are likely to
contribute to a persistent atmospheric CO2 bias over time because many of the physical processes regulat-
ing mixing are unlikely to change rapidly. Biases in atmospheric CO2 caused by this type of mechanism likely
grow through time as the atmospheric CO2 growth rate accelerates and transport of carbon out of the mixed
layer becomes an increasing bottleneck to net ocean carbon uptake. Our finding that many models under-
estimated the ocean anthropogenic carbon inventory (Figures 3 and S2) is consistent with other studies
indicating some ocean models exhibit weak meridional overturning circulation [Downes et al., 2011; Sallée
et al., 2013]. However, additional research is needed to understand the causes of model-to-model variations
in ocean carbon uptake for the CMIP5 models.

On land, similar deficiencies in model structure have the potential to contribute to persistent multidecadal
biases in carbon fluxes. Key regulators of carbon uptake on land in response to elevated levels of atmo-
spheric CO2 include, for example, the response of gross primary production (GPP) to CO2 concentration,
the allocation of GPP to longer lived woody pools, and subsequent increases in soil organic matter pools
[Thompson et al., 1996; Luo et al., 2006]. Carboxylation parameterizations of Rubisco often follow the form of
a modified Michaelis-Menten equation [Farquhar et al., 1980] and vary considerably among models. Models
that have lower estimates of the maximum carboxylation rate in different biomes, in response to nitrogen
limitation (e.g., Thornton et al. [2007]) or other factors, are likely to have smaller CO2-driven increases in GPP
by the end of the twentieth or 21st centuries. Similarly, models that have reduced allocation of GPP to wood
pools will also have lower rates of carbon uptake, given the same trajectory of GPP increases. Since in many
models, the maximum carboxylation rate is either held constant or unlikely to rapidly change in response
to changing environmental conditions, this parameterization can induce a long-term bias in carbon fluxes.
The same argument applies to allocation submodels: although many plant allocation models are dynamic
[Friedlingstein et al., 1999; Arora and Boer, 2005; Litton et al., 2007] and respond to regional variations in light
availability, soil moisture, and other environmental controls, many aspects of these models are unlikely
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• More processes (land use, 
regrowth, nitrogen, fire)

• Now more than 350 ppm 
spread in CO2!

• For identical emissions, 
radiative forcing varies by 
almost 2 W m-2 (more than 
RCP 4.5 vs RCP 6)

• Warming varies by 1.5 °C 
(comparable to spread in 
physical climate)

• Carbon cycle impacts climate 
uncertainty as much as 
clouds or people!
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Amazon Drought?
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Figure 1.1 Three models used in the IPCC Fourth Assessment that 
show decreased precipitation throughout the 21st century in South 
America: A) UK Met. Office’s HadCM3, B) GFDL version 2.1, C) 
MIROC medium resolution
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Figure 1.2
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Amazon Gradient

Figure	12:	Field	study	sites	across	a	continental-scale	climate	gradient	as	discussed	in	the	text
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Maximum correlation confidence interval for inclusion:  0.34

Drought Stress 
constrained using OCO SIF
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Drought Stress 
constrained using OCO SIF

• Weak correlation 
in Central Amazon

• Strong correlation 
over periphery

r < 0
0 < r < 0.25

r > 0.25
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Drought Stress 
constrained using OCO SIF
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Scaling in Space & Time

• Earth System Models are supposed to use 
mechanisms derived locally to estimate 
emergent changes at much larger scale

• Lab and field data from chloroplasts to 
cuvettes to eddy covariance get 
extrapolated to climate model grid cells

• An emphasis on “carbon weather” in the 
observations, but critical questions are 
about “carbon climate” in the models

• Sampling vs averaging

• Seeing the forest for the trees

Comparing models to obs is hard
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Multiscale Modeling

SASS MAMSMASS

CAM

CLM

CRM

CLM

CRM

CLMs

Single Atmosphere
Single Surface

(standard CESM)

Multi-Atmosphere
Single Surface

(SP CESM)

Multi-Atmosphere
Multi-Surface

(“multi-instance”
SP CESM)

f (x)≠ f (x)
Cloud Water & Ice

Precipitation

GOOD NEWS: 
Surface water cycling much more realistic (canopy evap, infiltration, transpiration)

BAD NEWS:
About 100x more arithmetic than standard CESM!
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Nonlinear Plants

f (x)≠ f (x)

rs (PAR)= 0.54

rs (PAR)= 0.72
rs (ws )= 0.96

rs (ws )= 0.62
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Single Column Model 
• Land-atmosphere coupling using three 

configurations (SASS, MASS, MAMS)

• SiB-SCM (one column) vs SiB-SAM 
(64 columns)

• Soundings of T, q, wind relaxed to NCEP 
reanalysis on 6 hr timescale 

• Local convection, precip, radiation, 
physiology, soil moisture, hydrology

• Three years 2001-2003 repeated
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SCM: Drizzle vs Downpours

Monthly	precipitation	(top),	standard	deviation	
during	hours	with	precipitation	(middle),	fraction	of	
time	when	precipitation	occurs	(bottom)	for	the	3	
models,	and	as	observed.

• All 3 experiments 
reproduce 
observed 
precipitation 
(constrained by 
LBC)

• Constant drizzle 
in SASS

• Still too much 
drizzle in MASS & 
MAMS

WET WETWET
DRY DRY DRY
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SCM: Surface Fluxes

Obs almost aseasonal

WET WETWETDRY DRY DRY

4x too high!

Reversed 
seasonality!
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Global Multiscale Climate 
Simulations with SP-CESM
• AMIP-style integrations of  SP-CESM, with prescribed SSTs

(27 years: 1979-2006)
• Coupled three ways: SASS, MASS, & MAMS

• MAML run uses 32 instances of  CLM with identical 
parameters in each CAM column, each coupled to its own 
CRM column

• Hourly CRM diagnostics for 1 year

SASS MAMSMASS

CAM

CLM

CRM

CLM

CRM

CLMs
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Nonlinear Fluxes

f (x)≠ f (x)

Hypothetical Wind Speeds
over the Tropical Pacific 

Trade Wind 
Regime
v = 5ms−1

σ =1ms−1

Gusty Outflow
Regime

v = 20ms−1

σ = 4ms−1

v =

v = 8 ms−1

v 2 = 64 m2 s−2

v2 =104 m2 s−2
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Precipitation
Evaluation
• Shift in western Pacific 

from Equator to off-
Equator in SP-CAM

• Dramatic drying of 
Amazon!

• Indian Monsoon is much 
more realistic in fine-
coupled run (MAMS)
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Site Precip
Evaluation

• Tower site (K34) near 
Manaus in Central Amazon

• SASS has most realistic total 
precipitation by far

• SASS has drizzle 95% of the 
time vs actual rainfall about 
10% of time in obs

• Multiscale runs are 
intermediate btwn control 
and obs
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Walker Circulation

Intensification of convective precipitation 
overWarm Pool region produces enhanced 

subsidence over Amazon 19



Precipitation

• MASS (SP-CAM) 
produces a much 
drier Amazon

• MAMS produces a 
much more realistic 
Indian Monsoon
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Precipitation 
vs Obs
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Precipitation Pathways

Fine-scale coupling produces much more throughfall and less 
canopy evaporation due to more intense precipitation

Canopy Evaporation 
/ Precipitation

Throughfall
/ Precipitation
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More Intense Rainfall

Intensity depends on resolution

Intensity also depends on physics!

Extreme'Precipita0on:'Scale'Dependence'

10'mm/hr'''

2'mm/hr'

Precipita0on'intensity'is'func0on'of'spa0al'resolu0on'
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More Intense Rainfall

“Dynamical Downscaling”

Chicago Atlantic City

SASL

obs

MAML

SASL

obs

MAML
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More Intense Rainfall

“Dynamical Downscaling”

Madrid Miami

SASL

obs

MAML

SASL

obs

MAML
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30-Year 
Max 

Rainfall

mm

SASL

MAML

MASL • SASL < MASL 
< MAML

• Average precip
not very different

• Extreme precip
is much greater
(& more realistic)
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GPP
• Reduction in GPP in 

MASS vs SASS due to 
reduction in precip
overall

• Shift in precip from 
Amazon to savanna in 
MAMS vs MASS 
correlated with changes 
in radiation distribution

Drier

Darker?
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Light & Water Limits
• Hourly GPP vs SW at 

CLM scales; colors show 
BTRAN (stress)

• Mid-day samples at K34 
tower (Manaus) for wet 
season (3/2003) vs dry 
season (9/2003)

• Fine-scale coupling 
produces more light 
limitation due to 
covariance of bright and 
dry conditions

Wet Season Dry Season

Light Response Curves
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Radiation Variability
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Summary
• Responses to changes in Amazon drought 

are among the most uncertain carbon-
climate feedbacks for 21st Century

• GCM diagnostic: Seasonal drought strongly 
correlates with SIF

• Cloud-scale vs CAM-scale coupling:

Ø Much more realistic precip intensity

Ø Water storage wet-to-dry season!

Ø Shift in Walker Circulation – drought!

Ø Covariation between water & light 
limitation (reduced GPP)
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