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Introduction

For some time we have been developing the methodology to include
observational uncertainty in our scoring. There are still only few datasets
which provide an estimate, but the list is growing:

I precipitation, runoff, water storage, radiation, sensible heat,
latent heat, and ground heat (Conserving Land-Atmosphere Synthesis
Suite (CLASS), doi:10.25914/5c872258dc183))

I nitrogen fixation (Davies-Barnard, et al., doi:10.1029/2019GB006387)

I boreal forest biomass (Thurner, et al., doi:10.1111/geb.12125) *

In this talk, I will present our ideas and make the case that this
methodology should be used when uncertainties are present by default.



Bias Uncertainty Score

Bias score from (Collier, 2018), where the overbar reflects a time mean,

bias(x) = vmod(x)− vref(x)

εbias(x) = bias(x)/std(vref(x))

sbias(x) = exp(−εbias(x))

which reflects that the error in bias is relative to the variability at a given
location. If a variable’s uncertainty is given as δv(t, x), then we can
formulate a relative error which only penalizes bias beyond the uncertainty
as,

εuncertbias (x) = max(|bias(x)| − δv(x), 0)/std(vref(x))

suncertbias (x) = exp(−εuncertbias (x))



What does this look like at a point?

Top: standard method Bottom: method with uncertainty



RMSE Uncertainty Score

In the same spirit as the bias, we formulate a RMSE relative error only
penalizing points which go beyond the uncertainty at any point in space
and time.

εuncertrmse (x) =

√
1

tf −t0

∫ tf
t0

max
(∣∣v cmod(t, x)− v cref(t, x)

∣∣− δu(t, x), 0
)2

dt

std(vref(x))



What does this look like at a point?

Top: standard method Bottom: method with uncertainty



Comparison of Scores with Uncertainty

I Each dot is a pair of scores of a model in the CMIP6 archive.
I All pairs are in the top-left half, reflecting that uncertainty scores are

strictly ≥ than the regular scores.
I Linear structure of each variable reflects that models retain the rank

relative to others.
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RMSE Score Map - Radiation

In the case of incoming radiation from CLASS, including uncertainty reveals
that most models are perfect globally (CESM2 shown).

I may be distateful that our comparison does not distinguish among
models

I does it rather mean that models are doing well enough given our
certainty in the data

I suggests models should spend effort elsewhere and that we need more
certain data

RMSE Score RMSE Uncertainty Score



Remarks

I That there is no major reshuffling of model ranking is a nice result,
this implies that we have not biased our notion of which models are
‘good’ by exlcuding uncertainty

I This is likely due to greater variance across models in areas with larger
uncertainty

I This result holds across 7 variables from 2 sources, but will need more
verification

I While this methodology in some sense blunts our tool, it also keeps us
from making strong statements where we are not certain

I It makes score maps more useful for identifying areas of improvement

I Including it our main methodology will only affect comparisons where
observational uncertainty is present


